001006584 001__ 1006584
001006584 005__ 20250514114658.0
001006584 0247_ $$2doi$$a10.1016/j.electacta.2023.142320
001006584 0247_ $$2ISSN$$a0013-4686
001006584 0247_ $$2ISSN$$a1873-3859
001006584 0247_ $$2Handle$$a2128/34295
001006584 0247_ $$2WOS$$aWOS:000966655400001
001006584 037__ $$aFZJ-2023-01725
001006584 082__ $$a540
001006584 1001_ $$0P:(DE-Juel1)187524$$aUecker, Jan$$b0
001006584 245__ $$aPerformance, electrochemical process analysis and degradation of gadolinium doped ceria as fuel electrode material for solid oxide electrolysis cells
001006584 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001006584 3367_ $$2DRIVER$$aarticle
001006584 3367_ $$2DataCite$$aOutput Types/Journal article
001006584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706172959_27428
001006584 3367_ $$2BibTeX$$aARTICLE
001006584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006584 3367_ $$00$$2EndNote$$aJournal Article
001006584 520__ $$aOne major challenge that has to be solved to enable a market entry of solid oxide electrolysis cells (SOECs) technology is the poor degradation behaviour caused by nickel agglomeration and migration in the state-of-the-art fuel electrodes. Novel fuel electrode materials that either suppress the nickel migration or even nickel-free electrodes could lead to a decrease in degradation rates. In this work, single cells based on the mixed ionic electronic conducting (MIEC) gadolinium doped ceria (GDC), acting as single-phase fuel electrode, were prepared. The cell performance was investigated by current density-voltage characteristics (jV) for steam and co-electrolysis conditions at various operating temperatures. Furthermore, electrochemical processes occurring in the single cells were analysed using electrochemical impedance spectroscopy (EIS), distribution of relaxation times (DRT) analysis and equivalent circuit model (ECM) fitting. Current densities of –914 and –969 mA‧cm−2, respectively, at 1.5 V and 900 °C operating temperature for steam and co-electrolysis were obtained, which corresponds to about 70% of the current density achieved in similar produced Ni-GDC fuel electrode cells. In addition, a long-term stability test was carried out during steam electrolysis (50% H2O + 50% H2) at 900 °C with a constant current load of –0.5 A‧cm−2 for 1070 h. In comparison to Ni-YSZ and Ni-GDC fuel electrode single cells reported in the literature, a significantly lower degradation rate of 112 mV‧kh−1 was observed. The electrochemical investigations and post-test analyses using SEM-EDX reveal that the GDC fuel electrode does not contribute significantly to the degradation, while the LSCF oxygen electrode is the major contributor to the cells’ degradation.
001006584 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001006584 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x1
001006584 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006584 7001_ $$0P:(DE-Juel1)180285$$aUnachukwu, Ifeanyichukwu D.$$b1
001006584 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b2$$eCorresponding author
001006584 7001_ $$0P:(DE-Juel1)129936$$aVinke, Izaak C.$$b3
001006584 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
001006584 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b5
001006584 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2023.142320$$gVol. 452, p. 142320 -$$p142320$$tElectrochimica acta$$v452$$x0013-4686$$y2023
001006584 8564_ $$uhttps://juser.fz-juelich.de/record/1006584/files/Performance%2C%20electrochemical%20process%20analysis%20and%20degradation%20of%20gadolinium%20doped%20ceria%20as%20fuel%20electrode%20material%20for%20solid%20oxide%20electrolysis%20cells.pdf$$yOpenAccess
001006584 8767_ $$d2023-10-09$$eHybrid-OA$$jZahlung erfolgt
001006584 909CO $$ooai:juser.fz-juelich.de:1006584$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187524$$aForschungszentrum Jülich$$b0$$kFZJ
001006584 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)187524$$aRWTH Aachen$$b0$$kRWTH
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180285$$aForschungszentrum Jülich$$b1$$kFZJ
001006584 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180285$$aRWTH Aachen$$b1$$kRWTH
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b2$$kFZJ
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich$$b3$$kFZJ
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001006584 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001006584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b5$$kFZJ
001006584 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001006584 9141_ $$y2023
001006584 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006584 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006584 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001006584 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006584 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001006584 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006584 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-24$$wger
001006584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2022$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001006584 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2022$$d2023-08-24
001006584 920__ $$lyes
001006584 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001006584 9801_ $$aAPC
001006584 9801_ $$aFullTexts
001006584 980__ $$ajournal
001006584 980__ $$aVDB
001006584 980__ $$aI:(DE-Juel1)IEK-9-20110218
001006584 980__ $$aAPC
001006584 980__ $$aUNRESTRICTED
001006584 981__ $$aI:(DE-Juel1)IET-1-20110218