001006586 001__ 1006586
001006586 005__ 20231027114400.0
001006586 0247_ $$2doi$$a10.1039/D3RA01210G
001006586 0247_ $$2Handle$$a2128/34261
001006586 0247_ $$2pmid$$a37006360
001006586 0247_ $$2WOS$$aWOS:000962147800001
001006586 037__ $$aFZJ-2023-01727
001006586 082__ $$a540
001006586 1001_ $$0P:(DE-Juel1)174463$$aWeber, Douglas$$b0
001006586 245__ $$aMulti-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline
001006586 260__ $$aLondon$$bRSC Publishing$$c2023
001006586 3367_ $$2DRIVER$$aarticle
001006586 3367_ $$2DataCite$$aOutput Types/Journal article
001006586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681729667_19357
001006586 3367_ $$2BibTeX$$aARTICLE
001006586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006586 3367_ $$00$$2EndNote$$aJournal Article
001006586 520__ $$aIn this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented. A key focus was the first step in which the reduction of 3-hydroxybenzoic acid (3-OH-BZ) into 3-hydroxybenzaldehyde (3-OH-BA) was catalysed by a carboxylate reductase (CAR) enzyme. Incorporation of the CAR-catalysed step enables substituted benzoic acids as the aromatic components, which can potentially be obtained from renewable resources by microbial cell factories. In this reduction, the implementation of an efficient cofactor regeneration system of both ATP and NADPH was crucial. Two different recycling approaches, either using purified enzymes or lyophilised whole-cells, were established and compared. Both of them showed high conversions of the acid into 3-OH-BA (>80%). However, the whole-cell system showed superior performance because it allowed the combination of the first and second steps into a one-pot cascade with excellent HPLC yields (>99%, enantiomeric excess (ee) ≥ 95%) producing the intermediate 3-hydroxyphenylacetylcarbinol. Moreover, enhanced substrate loads could be achieved compared to the system employing only purified enzymes. The third and fourth steps were performed in a sequential mode to avoid cross-reactivities and the formation of several side products. Thus, (1R,2S)-metaraminol could be formed with high HPLC yields (>90%, isomeric content (ic) ≥ 95%) applying either purified or whole-cell transaminases from Bacillus megaterium (BmTA) or Chromobacterium violaceum (Cv2025). Finally, the cyclisation step was performed using either a purified or lyophilised whole-cell norcoclaurine synthase variant from Thalictrum flavum (ΔTfNCS-A79I), leading to the formation of the target THIQ product with high HPLC yields (>90%, ic > 90%). As many of the educts applied are from renewable resources and a complex product with three chiral centers can be gained by only four highly selective steps, a very step- and atom efficient approach to stereoisomerically pure THIQ is shown.
001006586 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001006586 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006586 7001_ $$0P:(DE-Juel1)186708$$ade Souza Bastos, Lucas$$b1
001006586 7001_ $$00000-0002-0754-9704$$aWinkler, Margit$$b2
001006586 7001_ $$0P:(DE-HGF)0$$aNi, Yeke$$b3
001006586 7001_ $$0P:(DE-HGF)0$$aAliev, Abil E.$$b4
001006586 7001_ $$00000-0001-5574-4742$$aHailes, Helen C.$$b5
001006586 7001_ $$0P:(DE-Juel1)144643$$aRother, Doerte$$b6$$eCorresponding author
001006586 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D3RA01210G$$gVol. 13, no. 15, p. 10097 - 10109$$n15$$p10097 - 10109$$tRSC Advances$$v13$$x2046-2069$$y2023
001006586 8564_ $$uhttps://juser.fz-juelich.de/record/1006586/files/Invoice_INV_025167.pdf
001006586 8564_ $$uhttps://juser.fz-juelich.de/record/1006586/files/d3ra01210g.pdf$$yOpenAccess
001006586 8767_ $$8INV_025167$$92023-03-23$$d2023-04-17$$eAPC$$jZahlung erfolgt$$zGBP 850,-
001006586 909CO $$ooai:juser.fz-juelich.de:1006586$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174463$$aForschungszentrum Jülich$$b0$$kFZJ
001006586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b6$$kFZJ
001006586 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001006586 9141_ $$y2023
001006586 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006586 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006586 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006586 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001006586 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001006586 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001006586 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
001006586 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
001006586 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006586 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
001006586 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:04:19Z
001006586 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:04:19Z
001006586 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:04:19Z
001006586 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-26$$wger
001006586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2022$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001006586 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001006586 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
001006586 9801_ $$aFullTexts
001006586 980__ $$ajournal
001006586 980__ $$aVDB
001006586 980__ $$aI:(DE-Juel1)IBG-1-20101118
001006586 980__ $$aUNRESTRICTED
001006586 980__ $$aAPC