| Home > Publications database > Sensitivity of mountain wave drag estimates on separation methods and proposed improvements > print |
| 001 | 1006588 | ||
| 005 | 20240712100851.0 | ||
| 024 | 7 | _ | |a 10.1175/JAS-D-22-0151.1 |2 doi |
| 024 | 7 | _ | |a 0022-4928 |2 ISSN |
| 024 | 7 | _ | |a 0095-9634 |2 ISSN |
| 024 | 7 | _ | |a 1520-0469 |2 ISSN |
| 024 | 7 | _ | |a 2163-5374 |2 ISSN |
| 024 | 7 | _ | |a 2128/34591 |2 Handle |
| 024 | 7 | _ | |a WOS:001022833400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-01729 |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Procházková, Zuzana |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Sensitivity of mountain wave drag estimates on separation methods and proposed improvements |
| 260 | _ | _ | |a Boston, Mass. |c 2023 |b American Meteorological Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1687854407_16693 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to be parameterized. In recent decades GWs have been increasingly studied in high-resolution simulations, which, unlike direct observations, allow us to explore full spatiotemporal variations of the resolved wave field. In our study we analyze and refine a traditional method for GW analysis in a high-resolution simulation on a regional domain around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian high-pass filter method applied to separate GW perturbations from the background are sensitive to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating waves. Two modified methods, which choose the parameter value from spectral information, are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude. The differences between the traditional and the modified methods are especially pronounced during events with significant drag contributions from horizontal momentum fluxes |
| 536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 0 |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Kruse, Christopher G. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Alexander, M. Joan |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Hoffmann, Lars |0 P:(DE-Juel1)129125 |b 3 |u fzj |
| 700 | 1 | _ | |a Bacmeister, Julio T. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Holt, Laura |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Wright, Corwin |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Sato, Kaoru |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Gisinger, Sonja |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Ern, Manfred |0 P:(DE-Juel1)129117 |b 9 |u fzj |
| 700 | 1 | _ | |a Geldenhuys, Markus |0 P:(DE-Juel1)176613 |b 10 |u fzj |
| 700 | 1 | _ | |a Preusse, Peter |0 P:(DE-Juel1)129143 |b 11 |u fzj |
| 700 | 1 | _ | |a Šácha, Petr |0 P:(DE-HGF)0 |b 12 |
| 773 | _ | _ | |a 10.1175/JAS-D-22-0151.1 |0 PERI:(DE-600)2025890-2 |n 7 |p 1661–1680 |t Journal of the atmospheric sciences |v 80 |y 2023 |x 0022-4928 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006588/files/1520-0469-JAS-D-22-0151.1-1.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006588/files/AMSpaper-4.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:1006588 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129125 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129117 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)176613 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)129143 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-08 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-08 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-25 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J ATMOS SCI : 2022 |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-25 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-25 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-25 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|