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ABSTRACT: Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant
contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global
circulation models, their effects need to be parameterized. In recent decades GWs have been
increasingly studied in high-resolution simulations, which, unlike direct observations, allow us
to explore full spatio-temporal variations of the resolved wave field. In our study we analyze and
refine a traditional method for GW analysis in a high-resolution simulation on a regional domain
around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian
high-pass filter method applied to separate GW perturbations from the background are sensitive
to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal
fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating
waves. Two modified methods, which choose the parameter value from spectral information,
are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff
values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude.
The differences between the traditional and the modified methods are especially pronounced during

events with significant drag contributions from horizontal momentum fluxes.



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

SIGNIFICANCE STATEMENT: In this study, we highlight that the analysis of gravity wave ac-
tivity from high-resolution datasets is a complex task with a pronounced sensitivity to the method-
ology, and we propose modified versions of a classical statistical gravity wave detection method
enhanced by the spectral information. Although no optimal methodology exists to date, we show
that the modified methods improve the accuracy of the gravity wave activity estimates, especially

when oblique propagation plays a role.

1. Introduction

Internal gravity waves (GWs) manifest themselves in the flow as oscillations supported by
the buoyancy force within the fluid (Holton 2004). One of their crucial properties is the variety
of temporal and spatial scales on which they emerge. Horizontal wavelengths of GWs range from
thousands to a few kilometres (Fritts and Alexander 2003), being increasingly affected by rotation
at the upper wavelength bound (e.g. inertia-GWs) and by nonhydrostatic effects with dominating
vertical velocity component at the lower bound. They dominate the mesoscale wave spectrum
(wavelengths in the order of 10 - 1000 km) in the middle atmosphere (Andrews et al. 1987), but
they also impact the synoptic (Achatz et al. 2017) and planetary scale circulations (Andrews et al.
1987) and can also directly influence the surface weather conditions including extreme weather
events (Damiens et al. 2018). Furthermore, they impact the mesospheric circulation and are
responsible for the upper mesospheric wind reversal, the cold summer mesopause and warm winter
stratopause (Dunkerton 1978; Lindzen 1981).

The fact that GWs exist and exert influence across a wide range of scales presents a challenge
for numerical climate atmospheric models, as a significant portion of the GW spectrum is smaller
than the scale of the computational grid. Hence, momentum deposition and other possible effects
of the unresolved part of the spectrum have to be parameterized. GW parameterization schemes rely
on various simplifications of the sourcing, propagation and dissipation processes and employ several
tunable parameters, as reviewed recently in Plougonven et al. (2020). Given the importance of GW
parameterizations for model circulation and dynamics (Polichtchouk et al. 2018; Van Niekerk et al.
2018a; Eichinger et al. 2020; Sacha et al. 2021), this brings an undesirable level of uncertainty

to the simulations.
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Constraining the tunable parameters is complicated, because this requires general knowledge
of GW global distribution, wavelengths, frequencies, momentum fluxes, etc. (Alexander et al.
2010), which cannot be to date derived from global scale (satellite) observations. That said,
increasing attention is being paid to high-resolution numerical models that are becoming capable
of simulating the life-cycle of a broad spectrum GWs (Smith et al. 2007; Kruse et al. 2022).
For deriving momentum flux (MF) and GW drag (GWD) estimates from such complex data sets
(often in a bounded domain), Reynolds decomposition is usually applied and some type of a GW
separation method has to be used.

Many approaches exist to date ranging from theoretical approaches based on various forms of
balanced-unbalanced flow separation (Mirzaei et al. 2017; GaBmann 2019) including potential
vorticity inversion techniques (Viidez 2012), cosine (Denis et al. 2002), modal (Stephan et al.
2021, 2022) or Helmholtz (Biihler et al. 2014; Lindborg 2015) decomposition or the Transformed
Eulerian mean framework (Gupta et al. 2021) or its generalization (Kinoshita and Sato 2013), to
approaches that involve various forms of spectral methods and transforms (Wright and Gille 2013;
Preusse et al. 2014; Schoon and Ziilicke 2018; Kruse and Smith 2015; Dornbrack 2021). In our
study, we apply two methods that have been used in the literature before for GW separation and
consequent momentum flux evaluation in a limited model domain, that allow easy application and
straightforward GWD computation, the S3D method (Lehmann et al. 2012) and high-pass filtering
method of Kruse and Smith (2015). We demonstrate the sensitivity of the resulting GWD estimates
on the method and propose two modifications of the high-pass filtering method based on underlying
spectral analysis that can mitigate the uncertainty of GWD estimates connected with the subjective
choice of the cutoff wavelength in the filter.

In Section 2 of the paper, we first review the theory of the high-pass filter method for GW sep-
aration, the kinetic energy spectrum calculation and S3D method and we describe the algorithms
of the modified methods. In Section 3 the analysed dataset is described together with the method-
ology for drag estimates. In Section 4, we first show the kinetic energy spectrum of the combined
data (Section 4a) and the uncertainty of the standard high-pass filter method (Section 4b). The
resulting drag estimates from different methods are compared in Section 4c. Finally, in Section 4d,
the distribution of the error among the individual components of GWD is studied. The paper ends

with discussion and concluding remarks in Section 5.
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2. Methodology

a. High-pass Filter Method

We implement the high-pass filter method introduced in Kruse and Smith (2015) on a Cartesian
domain with constant 3-km horizontal resolution. The method uses a Gaussian filter, which mod-
ulates simulated fields of velocity components by convolution with a Gaussian function (Gonzalez
and Woods 2008).

In practice, the fast Fourier transform (FFT) algorithm is used instead of convolution. The high-

pass filter can be then formulated using the response function
(1242 L2
Frp (kD) = 1—e ()3 (1)

where k and / are zonal and meridional wavenumbers, respectively, and L is a cutoff parameter
corresponding to the width of the Gaussian function in the Fourier/wavenumber space. The Fourier
coeflicients are multiplied by the response function and the inverse FFT is applied to the product,
removing the large-scale patterns and leaving the small-scale perturbations intact.

The exponential function in Eq. (1) is, up to a scaling factor, a Gaussian function with the variance
0% =2n2/L%. As 95 % of the filtered waves will have wavenumber smaller than 20~ = 2n\/§/ L,
the wavelengths A that are retained fulfil

~ L
A< A (2)

After choosing an appropriate value for the parameter L, the perturbations with the wavelengths
A that are retained by the application of the high-pass response function in Eq. (1) are commonly
assumed to consist exclusively of GWs.

The periodization procedures applied before the FFT step will be discussed in Section 2c.

b. Horizontal Energy Spectrum

As the width of the spectrum of GWs on a local domain is variable (see Section 4c), we
aim to modify the high-pass filter method introduced above, so that the cutoff parameter reflects

the actual range of GW modes. To this end, we study the specific horizontal kinetic energy
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spectrum, which is computed at a given altitude as a sum of energies for individual horizontal

modes

1

Z _ A Ak A Ak
Ek,l = _2N2 (Uk,luk,l +Vk,lvk,1) > (3)

where 7 ; and ¥ ; are horizontal Fourier transforms of zonal and meridional velocities and N 1is
number of points in both horizontal directions.
Making explicit the divergent and vortical properties of the flow, the previous formula can be

alternatively written in the form

.1 (&R ) +67, (67 )

kI~ 2 2
() e

“4)

where ¢ ,i ; and 52’ ; are horizontal Fourier transforms of horizontal vorticity and divergence. The
first summand in the expression can be viewed as the rotational part of the spectrum and the second
one as the divergent part.

The 2D spectrum described by Eq. (3) or (4) can be summed up to obtain a 1D spectrum. The
exact procedure of the spectrum computation and the derivation of the second formula is described
in detail in Appendix A.

By the theory, we can expect the horizontal kinetic energy spectrum being proportional to K /3
for GW-dominated mesoscale (Menchaca and Durran 2019) and proportional to K=> for larger
scales (Geller and Gong 2010; Vallis 2017; Gage and Nastrom 1986). The latter dependence,
based on the quasi two-dimensional theory of turbulence at large scales, is related to the enstrophy.
Such theoretical proportionalities were repeatedly confirmed by observational studies (Nastrom and

Gage 1985; Lindborg 1999) and from high-resolution simulations (Blazica et al. 2013; Skamarock
2004).

c. Periodization Method

For computation of the horizontal energy spectrum, we used discrete Fourier transform (DFT).
However, DFT assumes that the data are periodic, which is not true for a local domain. Removal

of these aperiodicities is essential to get a correct, unbiased spectrum (Bierdel et al. 2012).
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There are different approaches to this problem. The method we implemented for the spectrum
computation is a detrending method presented by Errico (1985). Itis based on subtracting the linear
trend from each row and column of the data, where the slope is computed using the boundary values
only. If the data values are denoted by b; ;,i=1,...,N, j=1,..., M, we can write the slope of a line

connecting the first and the last element in j-th column as

_byj—bi;

VTN ©)

The values along the line are then modified by a line with the slope s so that the resulting column

is periodic,
IN+1

+§m(b]\l7j—b1,j). (6)

/ _— . ._' .
bl-,j =b;j—is;

The same procedure is applied also on rows.

The drawback of this method is that it creates artificial small-scale structures (Denis et al. 2002).
Hence, we only apply the method to obtain the horizontal kinetic energy spectrum and derived
spectral characteristics. We do not use it for the high-pass filtering with a fixed cutoff parameter.
In this case, we only subtract global linear trend in the data (evaluated by fitting a plane to the
data). The boundary effects are assumed to be small (Kruse and Smith 2015), but we note that
especially for larger cutoff values, the effect of non-periodicity can extend further in the domain
and project to our drag estimates. This effect can be mitigated by a replacement of DFT by discrete
cosine transform (Denis et al. 2002). In our case the application of the discrete cosine transform
resulted in negligible differences (see Fig. S1 in the Supplementary Material) with the DFT based
results, confirming that the boundary effects are small in our study. For consistency with Kruse

et al. (2022) we base our method on DFT.

d. Methods for Dynamical Cutoff Selection

Following the changepoint analysis of Burgess et al. (2013), we propose two modifications of
the Gaussian high-pass filter method, in which we use horizontal kinetic energy spectra to estimate
an optimal cutoff value variable with time and altitude. To get an integral information on GWs
from the spectra, the spectra are smoothed by moving average with the length of 15 hours before

applying any of the statistics described below.
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1) SPECTRAL SLOPE METHOD

The first modification of the high-pass filter method evaluates the cutoff parameter from the
slopes in the energy spectrum.

Based on the characteristic slopes, we can identify three parts of the spectrum - synoptic,
mesoscale and for the shortest wavelengths, starting from the so-called effective resolution, we
observe a steep descent of the kinetic energy. The exact value of the effective resolution of a model
depends on a set of factors (horizontal and vertical resolution, numerical dissipation, filtering, etc.).
Below this threshold specific GW modes can still be partially resolved, but as we go to smaller
wavelengths, an increasing part of the modes are unresolved.

By assuming that GWs dominate the mesoscale part of the spectrum in our domain, we choose the
cutoff using the wavelength at which the spectrum slope changes from —5/3 (the exact connection
of the wavelength to the cutoff value is through Eq. (2)).

The detection of the change-of-slope wavelength involves some non-trivial technical aspects: The
algorithm subdivides the range of wavelengths in the logarithmic spectrum plot into two sequences,
the first sequence well fitted by a line with an arbitrary slope and the second sequence well fitted
by a line with the slope -5/3. The second sequence is then considered the range of GWs. The
algorithm constructs the sequences iteratively, always adding the neighboring wavelength into the
sequence into which its neighboring wavelength fits better. The error metric used for comparing the
quality of the sequences is their line fitting error. The sequences are initialized by the wavelength
corresponding to the effective resolution, which is assumed to lie in the GW range, and by the
longest wavelength present, respectively, which is assumed to lie outside the GW range. The full
algorithm is described in Appendix C.

This process described above is applied on each of the smoothed spectra, resulting in a cutoff
length for each time step (apart from the initial and final time steps that are discarded during the
smoothing).

Further on, we will refer to the high-pass filter method that uses cutoff specified by this algorithm

as the spectral slope method.
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2) D1IVERGENCE DOMINATED METHOD

According to Saujani and Shepherd (2006), a simple way to distinguish between balanced and
unbalanced flow exists by comparing the relative magnitudes of divergent and rotational flow. For
balanced dynamics, the divergent part is much weaker than the rotational motion and vice-versa.
This motivates us to determine the cut-off based on the intersection of divergent and rotational
spectra following Burgess et al. (2013), assuming that GWs (although partly also having the
rotational component) dominate the spectrum, where the divergent part dominates. Detection of
the wavelength at which the divergent spectrum equals the rotational is not straightforward, as
there can be multiple intersections of the spectra. The applied algorithm therefore considers also
distances between individual intersections and chooses a maximal wavelength of a divergence-
dominated interval such that there is no divergence-dominated wavelength interval for larger
wavelengths that would be longer than the vorticity-dominated interval for smaller wavelengths.

We will refer to the high-pass filter method using cutoff specified at each time step (again apart
from the initial and final time steps because of spectrum smoothing) by this algorithm as the

divergence dominated method.

e. S3D Method

For comparison, we also derive GWD estimates using the widely used S3D method for GW
detection (Lehmann et al. 2012; Stephan et al. 2019; Preusse et al. 2014; Ern et al. 2017; Krisch
et al. 2017; Strube et al. 2021; Krasauskas et al. 2022).

In the applied settings, temperature data are analyzed. Separation into background and GWs is
performed by a FFT high-pass filter retaining all spectral components corresponding to wavelengths
shorter than 500 km. The whole volume is then divided into overlapping cuboids of 100 km x
100 km x 11 km (zonal x meridional x vertical direction) with cuboid centres every 0.39°in zonal
and meridional direction and every 1 km in vertical direction. In the cuboids sinusoidal fits of
the most and second significant wave component are performed resulting in the 3D wave vector,
amplitude and phase for both wave components (Lehmann et al. 2012). Fit results where the
wavelengths exceed 3 times the vertical or 3.5 times the horizontal cuboid size are suppressed

in the fitting by adding a penalty to the y?-values used in the fitting and, where still present,
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South Georgia (SG).

removed afterwards. According to Ern et al. (2004) GW momentum flux is then determined from

the wave parameters.

3. Data and Implementation

We use data from a hindcast simulation of Weather Research and Forecasting (WRF) Model
(Skamarock et al. 2019b) on a local domain covering parts of Southern America, Antarctica and
the south-east of the Atlantic Ocean described in Kruse et al. (2022). The GW filtering is applied on
the full simulation domain displayed in Fig. 1, described using the simplified Lambert Conformal
map projection. Following Kruse et al. (2022), we subsequently divide the domain into three GW
hotspots, see Fig. 1, Southern Andes (SA), Antarctic Peninsula (AP) and South Georgia (SG),
where we estimate the mountain wave drag (MWD).

After the initialization at 12 UTC on 8 October 2010, the model was integrated for 11 days with
the output frequency of 15 minutes. The simulation was guided by 6-hourly operational IFS analyses
via initial and boundary conditions. The model uses hybrid sigma-pressure vertical coordinate, but
for the computations, the data (pressure, potential temperature and velocity components fields) were
first linearly interpolated on equidistant vertical levels of geopotential height with 1 km spacing.
To make the computation of horizontal derivatives easier, after the filtering, we interpolate the data
also horizontally from the simplified Lambert Conformal map projection of the model to a regular

grid defined by values of latitude and longitude with the same horizontal resolution as the original

10
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data (the average distance between points along parallels and meridians is set to be 3 km). This
regridding is performed using the ESMF _regridding package in NCAR Command Language (NCL
2019).

The scripts and algorithms were implemented partly in Python and partly in NCL. They were
parallelized using the Python multiprocessing package and the program GNU parallel (Tange et al.
2011). The diagnostic algorithms are accessible through the link in Prochdzkova (2021).

Gravity Wave Drag

As the wind blows against a mountainside, it excites mountain waves (MWs), and it exerts
a pressure force on the mountain surface. In accordance with Newton’s third law, this gives
rise to a drag force acting in the opposite direction on the air, which is called mountain drag.
The mountain drag is deposited not only locally in the vicinity of the mountain, but is also
propagated by the MWs in a form of MFs to the free atmosphere, where the mountain wave drag
(MWD, a subset of GWD) is deposited at the level of their dissipation (Kruse and Smith 2018),
i.e. resulting in MF divergence. Estimating the drag exerted by GWs higher up from the surface is
a complex task for which various approximations exist. Here we follow the method used by Kruse
et al. (2022) and Kruse and Smith (2015) based on spatial averaging across the MW source regions.
The hotspot regions follow Kruse et al. (2022) and have been defined to contain as much of the wave
activity from individual sources as possible, while minimizing the influence of lateral propagation
of large-scale waves through the subdomains. The assumption on the area of the subdomains is
that u’ = 0, where (-) is an average over a 2D domain A and «’ denotes wave perturbation, while
the synoptic scale variables do not vary considerably over the subdomains. Obviously, the choice
of the area A can never be optimal, which can introduce some uncertainty. Its quantification is
however out of the scope of the current manuscript and we follow the choice of the subdomains
from Kruse and Smith (2015) (the horizontal dimensions of the subdomains are approximately
1700 x 1700 km? for SA, 1800 x 1400 km? for AP and 700 x 900 km? for SG, Fig. 1).

The resulting MFs form a rank-two tensor, whose divergence represents the MWD vector.
In spherical coordinates, defined by the radial coordinate r, latitude ¢ and longitude 4, MWD

components are computed as (taking into account the shallow atmosphere approximation implicit

11
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to the WRF model to substitute the radius r by the radius of Earth r,):

MWD, = MWD+ MWD, + MWD_,, (7a)
Te &
MWD, ~ ——= [ / 2 dgo] , (7b)
A 0
Te .7 2 I’e 1
MWDy, ~ _Z u'v cosgod/l - — uv'sinpdAdde, (7¢)
MWD, =~ ———(9 //pu w’cospdade, (7d)
MWD, = MWD, + MWD, + MWD,,, (7e)
r A2
MWD, ~ - l/ u'v'dgo] , (71)
A 2
Te 7?2 & Te 2
MWDy, ~ —— vecospdd| —— vesingpdAde, (7g)
A o A
Z 1 4 ’
MWD, ~ — A7 =0, || pv'w cosepdAde, (7h)

where the dashed quantities ', v’ and w’ are the perturbation components of flow velocity and p
is the area average of the density. The area A bounded by latitudes ¢; and ¢, and longitudes A1,

and A; is given by

A://rzcosgod/ldgozrg (A2 — A1) (sing —sing;y). (8)

The complete derivation of analogous formula for Cartesian coordinates is shown in Appendix
B. The additional terms that appear in the equations for the spherical coordinates (compared to
the equations in Cartesian coordinates) result from the differentiation of geometric factors such as
sin .

For the S3D method, only the vertical derivatives of the vertical fluxes of the horizontal mo-
mentum are evaluated from temperature amplitudes using the approach described e.g. in Ern et al.

(2017).

12
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Fic. 2. Horizontal spectrum of specific horizontal kinetic energy at 20 km. Plot displays the median spectrum
over the time period, the filled region denotes the range between the lower and upper quartile. Vertical line denotes
the wavelength of about 354 km that corresponds to the cutoff 500 km. The dotted lines display the theoretical
slopes -3 and -5/3.

4. Results

a. Broad Spectrum of GWs

First, we show the mean spectrum of horizontal kinetic energy for the altitude of 20 km in Fig. 2,
evaluated for the whole WRF domain. To guide the reader’s eye, the theoretical slopes of -5/3,
where we expect GWs to dominate the wave field, and -3 are illustrated by dashed curves below
the spectral line. The spectrum follows approximately the -5/3 slope for horizontal wavelengths
from approximately 25 km up to about 800 km in an average over the simulation period. By eye,
the hypothetical upper bound for the GW dominated spectrum given by the spectral slope approach
is larger than the wavelength of approximately 354 km, corresponding to the cutoff length 500 km
(denoted in Fig. 2 by vertical line), used in the high-pass filter method by Kruse et al. (2022). The
range up to which the spectrum follows the slope -5/3 is dependent on the altitude, which will
be studied in more detail in Section 4c. For example, at the altitude of 40 km, the upper bound
of the GW dominated spectrum is higher than 1000 km in average (plot of the mean spectrum
of horizontal kinetic energy for 40 km is shown in the Supplementary Material in Fig. S2).

The spectrum with its shape also varies in time. To illustrate this, we show the time evolution

of a local spectral slope between neighbouring wave modes for the altitude of 20 km in Fig. 3

13
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Fic. 3. Approximation of local slopes in the horizontal spectrum of specific horizontal kinetic energy at 20 km
(colours). The black lines visualise the time evolution of the effective resolution and of the upper bound for GWs

(described in Section 2d).

(a similar plot for 40 km is in the Supplementary Material in Fig. S4). The presented local slopes
in the figure, evaluated from adjacent data values, were calculated from immediate specific hor-
izontal energy spectra after a noise reduction by the 15-point Savitzky—Golay filter (Ostertagova
and Ostertag 2016). With a suitably chosen colour scale, we can see that the GW dominated part
of the spectrum can be well distinguished during the whole simulation. The lower bound corre-
sponding to the effective resolution is especially sharp and stable. However, the exact identification
of the upper bound is more tricky (the developed algorithm is described in Subsection 4c), because
at this region, the spectrum is often dominated by isolated peaks that are identifiable by zero slopes
(yellow colour). Those peaks are often missed by the algorithm and also it cannot be said with
certainty that those peaks belong to GW modes. This brings an inevitable uncertainty, however
small, to our MF and MWD estimates presented in Subsections 4¢ and 4d.

Next, we show in Fig. 4 the rotational and divergent components corresponding to spectrum of
horizontal kinetic energy at the altitude of 20 km (Fig. S2 in Supplementary material for 40 km). As
discussed in Section 2c, we can see the domination of the divergence component in the mesoscale
part of the spectrum and the prevalence of the rotational component for longer wavelengths. Again,
note that the median cut-off wavelength determined by the divergence dominated method is much
larger than the wavelength corresponding to the 500 km cut-off, which is denoted by the grey

vertical line in the figure.
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b. Sensitivity of the MWD Estimates to the Cutoff

Further motivation for a modification of the traditional high-pass filter method used for GW
separation is its sensitivity to the choice of the cutoff length, which is demonstrated in Fig. 5 for
the altitude of 20 km (for 40 km, it is shown in the Supplementary Material in Fig. S5). To obtain
these figures, we computed multiple MWD estimates following Section 3 from the high-pass filtered
data with constant cutoff, but for multiple cutoff choices ranging between 250 km and 1550 km
with a step size of 50 km. From the set of multiple MWD estimates for each time and domain,
the derivative with respect to the cutoff length was computed using finite differences. For an easier
interpretation of significance of the sensitivity, the derivatives are scaled by the median of the
absolute value of the MWD component over the time and cutoff length, i.e. the sensitivity is

plotted as:

1 dMWD (t,L,z)
(med, 1, (IMWD))) (2) dL ' ©)
The high-pass filter method relies on the existence of a clear separation of the mesoscale modes
from synoptic scale modes, i.e. the existence of a spectral band where the MWD and MF estimates
do not significantly depend on the cutoff length is assumed. In Figure 5, we show the time evolution

of the dependence of the zonal and meridional component of the MWD on the cutoff length at the
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altitude of 20 km for the three subdomains. Blue colours indicate that the drag decreases with
cutoff, whereas red colours mean that it increases. Immediately we see that the desired band, where
the MWD sensitivity to the cutoff length is near zero (indicated by white colour in the plots) is
very narrow during some events and its location varies sharply over time.

For the zonal MWD component, the constant cutoff of 500 km indeed falls into the low sensitivity
region for the SA and AP subdomains producing unbiased MWD estimates during some periods
of the simulation. However, at other instants the white band is very narrow and fluctuating over
a large range of wavelengths (from around 400 km to more than 1000 km).

As for the SG subdomain, the sensitivity here is generally stronger (in relative terms) than for AP
and SA and the white band is even more variable over time, which might be related to the fact that
the SG subdomain is the smallest one, as discussed in Section 5. Note that for SG in the first days
of the analyzed period the sensitivity of the zonal MWD component shows red regions embedded
between blue regions around the 800 km cutoff, meaning that the drag is increasing when allowing
for both longer and shorter wavelengths besides the red region.

For the meridional MWD component, the estimates show sensitivity similar to the sensitivity
of the zonal component. Only for the AP domain, the sensitivity is relatively weak and the constant
cutoff of 500 km is an almost ideal choice except for some intermittent events. However, these
findings hold only for the studied period and can change especially with a different background
wind field and its orientation with respect to the topography.

The sensitivity of MWD estimates to the cutoff is further dependent on the altitude in question.
In the Supplementary Material, we show the sensitivity of MWD components at 40 km. Generally
speaking, for the upper stratospheric altitudes the sensitivity is smaller (presumably due to the
dominant importance of vertically propagating GWs, as will be discussed further in the text).
At tropospheric levels, the sensitivity is far stronger, but the hypothesis of the existence of the GW
dominated part of the specific horizontal kinetic energy spectrum is increasingly invalid.

Altogether, the results suggest that the MWD estimates from the high-pass filter method may
contain significant uncertainty due to the sensitivity on the cutoff value and it is generally not
possible to choose a constant value of the parameter. For this reason, we propose two modifications
to the method that sets the cutoff value in every time step using the information from the energy

spectrum analysis.
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FiG. 5. Derivative of MWD components with respect to the cutoff for different subdomains: a) MWD, SA, b)
MWDy, SA, ¢) MWD, SG, d) MWD,, SG, e) MWD,., AP, f) MWD,,, AP. The colours code the relative MWD
change with respect to the median of the absolute value of MWD computed over time and cutoff length. The two
colours close to white represent the change of the MWD component smaller than 10 % of the median if the cutoff

length is increased by 100 km.

c. Comparison of the Methods

The analysis of the total specific horizontal kinetic energy spectrum (averaged over 15 hours
to eliminate local noise effects emerging from incomplete wave periods) provided two important
natural bounds on the simulated GW spectrum. The first bound is the effective resolution, which

1s a limiting wavelength for the fully resolved waves by the model (the black bottom line in Fig. 3;
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Fic. 6. Average vertical profile of effective resolution (blue line) with its variation (blue area) throughout

the simulation. The red line depicts the average distance between two neighbouring vertical model levels.

Klaver et al. 2020). This bound is estimated as the wavelength at which the values in the horizontal
spectrum of specific horizontal kinetic energy deviate significantly from a straight line fitted to the
mesoscale part of the spectrum.

Fig. 6 shows that the vertical profile of effective resolution follows the variations of vertical
resolution with height suggesting that vertical resolution of the model can be an important factor
in our simulation, controlling the effective horizontal resolution. The connection of vertical
resolution and the horizontal scale of resolved processes was studied e.g. in Skamarock et al.
(2019a).

The effective resolution is evaluated from the spectrum for the entire domain and it does not
necessarily mean that there are no waves with horizontal wavelengths shorter than this threshold.
Locally, GW modes can be present with horizontal wavelengths smaller than the effective resolution
that are resolved by the model due to the sufficiently long vertical wavelengths. By applying a low-
pass filter to cut the shorter modes off, we would lose a part of the GW related information. Hence,
for means of the GW separation the removal of the wavelengths shorter than the effective resolution
is not beneficial. This is confirmed by visual comparison of the filtered fields with and without

the application of a low-pass filter (Fig. 7).
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The second bound, which can be derived from the total kinetic energy spectrum is the longest
wavelength, until which the spectrum of horizontal kinetic energy follows the theoretical shape
for the mesoscale spectrum (presumably GW dominated; upper black line in Fig. 3) introduced
in the spectral slope method presented in Section 2¢. An alternative natural bound is the intersection
of divergent and rotational part from the spectrum decomposition introduced in the second part
of Section 2c. We argue that choosing a cutoff based on the spectral information is a physically
optimal approach, although it turns out that determination of this bound brings along a considerable
level of uncertainty in both the spectral slope method and the divergence dominated method.

The reason why determining the upper bound on the GW part of the spectrum from the slopes
is complicated can be seen e.g. for the altitude of 20 km in Fig. 8 (or for the altitude of 40 km
in Fig. S6 in the Supplementary Material). The problem is that the horizontal kinetic energy
spectra are not smooth in the range of wavelengths for which the bound is sought, but, near the
upper bound, are dominated by individual modes. Therefore, an application of a simple algorithm
based on fitting a line to a part of the GW dominated spectrum, which would terminate on the
first random departure, could result in too small cutoff values. As we cannot a priori rule out

the possibility that the dominant modes in this uncertain region are connected to GWs (e.g. inertia-
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GWs sourced by the orography in the domain; see Section 5), we have to apply a more advanced
greedy algorithm, as described in Section 2d.

The mean vertical profiles and variability of the dynamically estimated cutoff for the analysed
simulation using both methods are shown in Fig. 9. As for the spectral slope method (Fig. 9a),
the mean cutoff is largest approximately between 20 km and 40 km, where it exceeds 1000 km.
The cutoff gets gradually smaller both above in the upper stratosphere and mesosphere and below
in the lower stratosphere. The mean cutoff is smaller than 500 km only above 60 km and below
10 km. This is reflecting the mean zonal wind profile (see Fig. 14 in Kruse et al. (2022)) with
a tentative explanation that the maximal wavelength of vertically propagating GWs is decreasing
with the decreasing background winds in the upper stratosphere. Numerical damping as cause
for this effect can be excluded in this WRF configuration. In this lower to middle tropospheric
region, it is generally not expected that GWs will dominate any part of the horizontal kinetic energy
spectrum and we do not produce MWD estimates in this region. The time variability of the cutoff
value at all levels in the stratosphere is large and the standard deviation is of a similar magnitude
as the mean cutoft.

The vertical profile of the cutoff value obtained by the divergence dominated method is shown
in Fig. 9b. Similarly to the spectral slope method, the cutoff values are continuously rising from

the troposphere. Above the altitude of approximately 15 km, the mean cutoff value remains about
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Fic. 9. Mean vertical profile of the cutoff parameter. The filled region depicts the standard deviation

corresponding to the temporal variability. a) Spectral slopes method. b) Divergence dominated method.

approximately 1000 km, with less pronounced altitude variability than in the spectral slope method.
On the other hand, the shaded area in the plot still show high temporal variability. Within the range
given by the standard deviation, the cutoff values obtained by this method vary mostly between
750 and 1250 km. The agreement between the two methods further supports the choice of a GW
separation method with a time varying cutoff.

A significant difference between the cutoff profiles in Fig. 9 is the decrease of cutoff above the
altitude of 60 — 65 km for the spectral slope method, that is not present in the plot for divergence
dominated method. The reason is that the shape of the kinetic energy spectra at these altitudes
changes so that there is no clear separation into parts with different slopes and the spectral slope
method is therefore unreliable at the higher levels.

Next, MWD estimates from the dynamical cutoff methods are compared with the original high-
pass filter method for a constant value of the cutoff length 500 km, which is used in Kruse et al.
(2022), and also with the S3D method. In Fig. 10, the zonal and meridional MWD estimates
from the two methods with variable cutoff and a method with a constant cutoff are compared
at 20 km for each hotspot (Fig. S7 in the Supplementary Material depicts the estimates at 40 km).
As suggested by the sensitivity analysis in Fig. 5 and the large variability of the dynamical cutoff
estimates in time, the difference between the methods depends on time and also on the hotspot

region (and altitude). For AP, the episodes of larger differences between the MWD estimates are
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« rather sporadic. For SA and SG the differences have larger magnitude and are more frequent.

«s For the meridional MWD component the differences are smaller.
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Fic. 10. Comparison of the improved method and high-pass filter method with constant cutoff at 20 km:
a) MWD, SA, b) MWD, SA, c) MWDy, SG, d) MWD,,, SG, e) MWD, AP, f) MWD, AP. The orange and
green lines visualize the time evolution of MWD computed using the wave perturbation from the methods with
dynamically changing cutoff. The blue lines describe the evolution of MWD using the high-pass filter method
with constant cutoff length 500 km. The filled blue regions represent the possible values of MWD in individual

times for the cutoff range 250 — 1550 km.
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Regarding the S3D method, vertical momentum fluxes that are derived from the S3D temperature
perturbation are well correlated with the momentum fluxes obtained from perturbations separated
by the methods with Gaussian filter, even though the values are lower. This is easily understandable
as the wavelengths from the S3D method in our configuration cannot be larger than 500 km and
the contribution from long waves is therefore missing. However, the S3D method encounters
difficulties when evaluating the resulting drag, because the method is not continuous (different
sines can be fitted in adjacent levels) and therefore the vertical derivative of momentum fluxes
creates noise at some timesteps. Up to these noise perturbations, the time evolution of the vertical
drag from the S3D method is similar to the other methods (not shown), but its magnitude is
generally significantly lower.

Statistical differences between the four methods at the altitude of 20 km are summarised in Table 1.
Given the fact that the results derived from the S3D method contain a few nonphysical outliers and
that the distributions of MWD are slightly distinct from the normal distribution (especially in the
fact that they are showing much longer tails), we used the median and interquartile range (IQR)
instead of the mean and the variance for the comparison in order to obtain a more robust statistical
description.

The median values of the derivatives of the flux of the zonal momentum (MWD,,, MWD,,,
MWD,,) range from -0.39 to 0.00 for the high-pass filter methodologies and from -0.08 to 0.06 for
the S3D method, with the IQR larger than the median, signifying high variability and intermittency
seen already in Fig. 10. Comparing the individual methods, we can generally see that the median
and IQR differences between the methods are smaller between the dynamical cutoff methods than
between each of them and the constant cut-off method. The pronounced differences between IQRs
of MWD,,, MWD, and MWD_, (being generally smaller for the method with constant cutoff
than for the spectral based method) mean that for individual events the difference of actual drag
estimates can be more than 100 % larger than the median difference suggests.

Similar statistics are shown in Table 2 for the altitude of 40 km. Here the median MWD estimates
for all methods and regions are larger and hence the IQR is smaller than at 20 km in relative terms.
The difference in median MWD values between the methods is around 10 % of the MWD median

value and similarly for the IQR estimates. The drag estimated by the constant cutoff methodology
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MWD MWD x MWDy MWD,
Median | IQR | Median | IQR | Median | IQR | Median | IQR

SA -0.26 0.49 -0.01 0.07 -0.01 0.06 -0.23 0.50
Constant cutoff AP -0.47 1.16 -0.03 0.07 -0.04 0.10 -0.39 1.00
SG -0.09 0.40 -0.01 0.13 0.00 0.10 -0.09 0.43

SA -0.22 0.63 0.00 0.17 0.00 0.14 -0.24 0.60
Spectral slopes AP -0.47 1.13 -0.05 0.15 -0.07 0.18 -0.36 0.95
SG -0.20 0.69 -0.09 0.30 0.00 0.38 -0.12 0.71

SA -0.27 0.60 0.00 0.17 -0.01 0.12 -0.28 0.61
Divergence dominated | AP -0.58 1.49 -0.09 0.21 -0.03 0.12 -0.37 1.08
SG -0.31 0.87 -0.16 0.35 -0.02 0.52 -0.15 0.80

SA - - - - - - -0.06 0.74
S3D AP - - - - - - -0.08 0.35
SG - - - - - - 0.06 0.36

TaBLE 1. Medians and interquartile ranges (IQR) for zonal MWD and its components using different methods

at the altitude 20 km. Values are given in m s~ 'day~!.

is generally smaller than for the two variable cutoff methods for all regions and components, but
its vertical component is still much stronger than from the S3D method.

A notable aspect of the results for both altitudes is that the differences between high-pass filter
methods in median MWD, and MWD, estimates are of comparable magnitude with the differences
in MWD, despite the median MWD, drag being stronger by an order of magnitude. This means
that the relative uncertainty in these MWD, and MWD, terms connected with horizontal flux
divergences is much bigger.

To sum up, there are large differences between MWD estimates from S3D and high-pass filter
methods and although the assumption of a constant cutoff does not result in pronounced systematic
biases of the zonal MWD or its components, the estimates from the dynamic methods can lead at
individual events to differences larger than the order of magnitude of the median MWD values.

When we focus on individual events at 20 km, one of the most pronounced differences between
the methods can be seen on 12" October for the zonal MWD component in SA (Fig. 10a).
The MWD, estimate from the constant cutoff method was small but negative, whereas the spectral
slope method (and with small time-shift also the divergent dominated method) estimated strong
acceleration up to 2 m s~'day~!. This event is reflected also in differences of the meridional MWD
in SA (Fig. 10b), even though the magnitude of the difference is not as pronounced as for the zonal

component.
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MWD, MWD MWDy MWD
Median | IQR | Median | IQR | Median | IQR | Median | IQR
SA -15.8 20.8 -0.6 1.1 0.5 1.4 -15.5 235
Constant cutoff AP -11.6 22.1 -1.0 2.0 -0.3 0.8 -10.2 19.5
SG -5.3 12.3 -0.4 2.7 0.4 1.4 -5.8 11.1
SA -16.2 20.5 -0.9 1.9 0.4 1.3 -15.6 21.2
Spectral slopes AP -13.0 23.2 -1.3 3.1 -0.3 1.0 -9.7 18.9
SG -6.2 13.8 -0.7 4.6 0.4 2.0 -6.3 11.7
SA -16.4 20.6 -0.9 1.9 0.7 1.6 -15.9 24.3
Divergence dominated | AP -12.9 23.8 -1.5 3.0 -0.4 14 -10.2 20.5
SG -6.3 13.8 -0.7 4.8 0.6 2.5 -6.4 12.0
SA - - - - - - -12.9 23.8
S3D AP - - - - - - -8.4 139
SG - - - - - - -3.4 17.7

TaBLE 2. Medians and interquartile ranges (IQR) for zonal MWD and its components using different methods

at the altitude 40 km. Values are given in m s~ 'day~!.

For the SG subdomain (Figures 10c and 10d), a similar pronounced difference occurs slightly
later, around 12" October, 20:00. A tentative hypothesis mentioned already in the previous section,
is the horizontal propagation of waves with wavelengths larger than the wavelengths corresponding
to the chosen constant cutoff value (probably downstream propagating inertia-GWs), which would
not be captured by the method with constant cutoff in both subdomains. The fact that in the
divergence dominated method the values are also not so high in this time period supports this
hypothesis, as this method might also be able to capture inertia-GWs only to some extent because
of their contribution to the rotational component. For the AP subdomain around 12t October, there
are also visible differences between the estimates of both MWD, and MWD, although smaller than

for the other two subdomains due to the smaller sensitivity of the MWD around this date in AP.

d. Impact of GWs with Larger Horizontal Wavelengths

In this subsection, we study the sensitivity of individual parts contributing to the zonal MWD
component, i.e. the zonal divergence of a zonal flux of zonal momentum (MWD, ), meridional
divergence of a meridional flux of zonal momentum (MWD,,) and vertical divergence of a vertical
flux of zonal momentum (MWD, ).

The sensitivity of those contributions for each hotspot is shown in Fig. 11. Generally, for all

subdomains, the dependence is much stronger for the parts with horizontal divergence MWD, and
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MWDy, than for MWD,,. Because the sensitivity expresses the fact that the choice of the cutoff
length determines the accepted portion of GW modes, this means that the horizontal flux com-
ponents are more exclusively connected with GW modes with longer horizontal wavelengths than
the vertical flux components, as expected from linear theory and observed by aircraft (Smith and
Kruse 2017) - the horizontal wave momentum flux components compared to the vertical fluxes are
more exclusively connected with GW modes with longer horizontal wavelengths that are increas-
ingly affected by rotation (Teixeira 2014). Another important aspect is that the sensitivity of the
horizontal flux contributions has often an opposite sign, which means that the large sensitivities
of those two components partially compensate and do not fully project to the net MWD,..

The sensitivities are reflected in differences of MWD+ MWD, and MWD, estimates between
the constant and dynamically determined cutoff methodologies (Fig. 12 for the altitude of 20 km).
For the component MWD,,, all the compared methods produce very similar estimates, except
for the period around 11™ and 12" October, when the determined cutoff is exceptionally large
(up to 2000 km for spectral slope mathod and 1500 km for divergence dominated method).
The differences in the horizontal components are more pronounced during the whole simulation.
Both the methods with the dynamically set cutoff generally lead to substantially higher magnitudes
of the components MWD, and MWD,,. For all hotspots, we can find large differences on 12t
October, but for each hotspot individually there are more events with pronounced differences.
For example, for SA and AP we can see for the horizontal components large differences between
the spectral slope method and the constant cutoff method between 17" and 19" October, but with
only small differences in MWD_,. The fact that the sensitivity is, for some events, higher for
the horizontal components even in the absolute numbers, is noticeable from the shaded regions
in Fig 12.

The different sensitivity to the methodology of the derivatives of the zonal momentum flux
MWDy, MWDy, and the MWD, is confirmed and quantified by the correlations between the time
series of the MWD, component estimates using the methods with dynamically changing cutoff
and the method with constant cutoff. The Pearson correlation coefficient is for MWD, for all
subdomains and tested altitudes close to one (third column in Tab. 3), whereas for the components

MWD, and MWD,,, the values are significantly lower (first two columns in Tab. 3).
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MWDyxx | MWDyx | MWD,
SA 0.76 0.21 0.88
Spectral slopes AP 0.73 0.29 0.96
SG 0.52 0.68 0.91
SA 0.69 0.51 0.90
Divergence dominated | AP 0.64 0.59 0.97
SG 0.36 0.51 0.81

TaBLE 3. Pearson correlation coefficient between the methods with constant and dynamically changing cutoff

for the components of zonal drag MWD, the altitude 20 km.

Regarding the sensitivity and differences between components of the meridional drag MWD,
the results are almost identical as for the zonal MWD components with sensitivity of the horizontal
divergence parts being stronger and leading to larger differences in corresponding meridional
MWD components (Figs. S10 and S12 in the Supplementary Material) Also, similar results can be
derived for the level of 40 km (Figs. S8 and S9 for the zonal component and Figs. S11 and S13 for

the meridional component).
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Fic. 11. Derivative of MWD, components with respect to the cutoff, rescaled by the median, at the altitude
of 20 km for different subdomains: a) MWD, SA, b) MWD, SA, c) MWD, SA,d) MWD, SG, e) MWD,
SG, f) MWD, SG, g) MWD, AP, h) MWD, AP, i) MWD_,, AP. The colours code the relative change
of the derivative of the horizontal momentum flux (MWD, MWD,,,., MWD, ) with respect to the median of the
absolute value of the quantities computed over time and cutoff length. The two colours close to white represent

the change of the quantities smaller than 10 % of the median if the cutoff length is increased by 100 km.
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FiG. 12. Comparison of the improved method and high-pass filter method with constant cutoff at 20 km for hor-
izontal and vertical part of MWD, and different subdomains: a) MWD,,=MWD,+MWD, SA, b) MWD, ,
SA, ¢) MWDy, SG, d) MWD, e) MWDy, AP, f) MWD, ., AP. The orange and green lines visualize the time
evolution of MWDy, or MWD ., computed using the wave perturbation from the methods with dynamically
changing cutoff. The blue lines describe the evolution of MWDy, or MWD, using the high-pass filter method
with constant cutoff length 500 km. The filled blue regions represent the possible values of MWDy, or MWD,

in individual times for the cutoff range 250 — 1550 km.
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5. Discussion and Conclusions

Due to their simplicity, high-pass filtering methods based on Fourier (Kruse and Smith 2015;
Gisinger et al. 2017) or cosine (Van Niekerk et al. 2018b) transforms are widely used in atmospheric
physics to identify GW perturbations in high-resolution simulation data. The uncertainty of the
GWD estimates connected with the a priori choice of the cutoff parameter used in the methods has
nevertheless not been studied to date. In the present study, we address this problem to show that it
is not possible to choose a universal constant cutoff parameter.

When studying the dependence of the zonal and meridional drag component MWD, and MWD,
estimates on the cutoff length, the results are notably sensitive to the choice of the cutoft for the
whole range of admissible cutoffs. However, when considering individual parts of the drag,
the studied quantities can be divided into two groups - those including vertical velocity (i.e.
vertical fluxes), and purely horizontal terms. The sensitivity of terms involving vertical velocity
is generally lower than the sensitivity of terms without it. In Kruse and Smith (2015), such kind
of behaviour is hypothesized to be caused by the shape of the vertical velocity spectrum. Also, these
results support the hypothesis that the sensitivity of the high-pass filter method is caused mainly
by the horizontally propagating GWs with large horizontal wavelengths, which contribute strongly
to the horizontal derivatives of the horizontal fluxes of the horizontal momentum, modifying the net
value of the drag.

The sensitivity of the method on the cutoff length motivates modifying methods for a variable
cutoff parameter. The horizontal energy spectra were analysed to estimate the optimal cutoff value.
In general, the spectral analysis indicates that for the studied region and time the traditionally used
cutoff is too small. The cutoff is dependent also on the altitude, hence we estimate it at each time
step and altitude separately. This modification causes a moderate slowdown of the methods but
on the other hand, it arguably reduces the uncertainty of the traditional high-pass filter method
drag estimates. Our comparisons show that in some cases the difference between MWD estimates
of the constant and dynamically set-up cutoff methods can be of the same order of magnitude as
the estimates.

Compared to Kruse et al. (2022), inertia-GWs (Dunkerton 1984) and even internal Rossby-GW's
(Teixeira and Grisogono 2008) sourced by the orography in the domain may be increasingly sampled

as we allow for larger cut-off values. The inclusion of the longer modes to the analysis of dedicated
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high-resolution simulations is beneficial, especially if one is concerned about the horizontal fluxes
of horizontal momentum and the resulting drag components. Particularly, inertia-GWs have been
shown to play a role in model sensitivity to vertical resolution, as vertical resolutions of around
100m would be needed to fully resolve them, even though the horizontal resolution may be sufficient
(Skamarock et al. 2019a). For the general circulation models, the sensitivity of the resolved GW
momentum flux on vertical resolution in the stratosphere and mesosphere has been demonstrated
before by Watanabe et al. (2015). Recently, equatorial-trapped inertia-GW's with fine vertical scales
have been identified by observations with unprecedented vertical resolution in the tropical UTLS
(Bramberger et al. 2022), with yet unquantified importance for stratospheric dynamics, QBO and
cirrus cloud formation.

However, also these waves with larger horizontal wavelength are not fully represented in the
current generation numerical weather prediction and climate models due to the coarse vertical
resolution (Skamarock et al. 2019a) and hence we incorporate them to our MWD estimates.

There are several aspects that contaminate the accuracy of the modified methods as well. The most
pressing drawback of the methods with dynamic cutoff is the uncertainty emerging during the cutoff
specification. As already mentioned, the part of the horizontal kinetic energy spectrum between
GWs and synoptic scale motions is dominated by individual modes that cannot be easily attributed
as GWs/nonGWs but might be rather connected to e.g. inertia-GWs or Rossby-GWs. Also,
the determination of the wavelength where the slope of the spectrum changes or the wavelength
of the intersection of divergent and rotational components is performed in a logarithmic plot.
Hence, the effect of a small error of specification in the spectrum can result in relative large error
in the cutoff length. This has negative impact on the accuracy of the MWD estimates. However,
note that for acceptable detection algorithms the error from using a constant cutoff shall be always
higher.

Another issue is that the proposed modified methods use larger cutoff lengths. Therefore, one
should pay attention to the choice of subdomains at which the quantities are evaluated. First,
the subdomain size should be large enough, so that the present waves can be averaged over
the subdomain. Otherwise, the assumptions of the technique applied for evaluation of MWDs and
MFs might not be satisfied and the results might be affected by the presence of wave perturbations

whose average over the subdomain is not zero. This can be the case for the smallest hotspot,
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SG, during events with large cutoffs. Nevertheless, the comparison of the modified and constant
cutoff high-pass filter methods did not produce qualitatively different results between SG and other
hotspots, which are large enough not to be affected. Second, in the applied filtering procedures,
the use of a larger cutoff implies that artificial perturbations penetrate farther away from the domain
boundaries (for a detailed discussion, see Kruse and Smith (2015)). The subdomains thus need
to be distant enough from the outer boundary. Otherwise, the use of the cosine transform instead
of the Fourier transform or the application of another periodization method that does not generate
small-scale oscillation is advisable.

Although we analyzed only a regional simulation with a limited time-span, it is reasonable
to expect that the cutoff sensitivity of the GW momentum flux and drag estimates is a robust
feature, which will be pronounced particularly in the presence of horizontally propagating GWs.
Even though this effect might cancel out climatologically, in short-term studies, this can cause
large uncertainties of the GW momentum flux and drag estimates.

The proposed methodologies are aimed at dedicated analyses of GWs and their interactions
in high-resolution model simulations on regional domains. But as such they can also help to
provide constraints for the GW parameterization schemes in global models. Particularly, with the
shift towards scale-aware GW parameterizations (e.g. van Niekerk and Vosper, 2021) it becomes
important to have a good knowledge of the parameterized source contribution over a spectral range
as wide as possible and as accurate as possible. Given the spatial and temporal variability of the
affected scales, variable cut-off is essential to quantify the effects of the parameterized source.

Further improvement of the methods (especially regarding the precision of the cutoff specifica-
tion) is the object of further research. Alternatively, the filtering can be performed by Lagrangian
approaches in the internal frequency domain, as demonstrated by Shakespeare et al. (2021) for
GWs in the ocean. Also, we plan to compare the MWD estimates with other methodologies that
have not been used to estimate resolved GWD from simulations to date. Nevertheless, we argue that
the dynamic cutoff methods proposed here based on the underlying spectral analysis presents a step

forward in providing more accurate estimates of MWD from high-resolution model simulations.
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APPENDIX A

Specific Horizontal Kinetic Energy Computation

Horizontal kinetic energy at an altitude z with a unitary density is given by

/ / (uz(x,y,z) +v2(x,y,z)) dxdy

—1N-1 (A1)
(1002, ) (a0

E°=

=
=

2
= ] —

I
(]
~.
I
(=)

where u; j =u(x;,y;) and v; j = v(x;,y;) are the horizontal velocity components at individual grid
points, N denotes number of grid point in each direction and Ax is the horizontal distance between

grid points for both x and y directions.
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es 10 evaluate the spectrum, it is convenient to describe the energy in the Fourier space. We use

s« the definition of the two-dimensional discrete Fourier transform (DFT)

N-1N-1
Grs = Apme N e MY k=0, N-1, (A2)
n=0 m=0
s With its inverse
1 SRS A ik opimi
Amn = = agie”"ve v, mn=0,...,N-1. (A3)
k=0 [=0

e By the Parseval theorem for two-dimensional DFT given by equation (A2) (Sundararajan 2001),

s 1t holds
N-1N-

1
2 A A% A A%
(ul-7j+v ) ﬁ (uk,luk’l+vk,1vk’1) (A4)
i=0 j=0 k=0 1=0

—

o With % ; and V;; obtained by the DFT of the velocity components. The symbol * denotes
s the complex conjugate. The latter expression can already be used to compute specific horizontal
w0 Kinetic energy for individual wave numbers k,/ =0,...,N—1 as

. 1

Ei=5n2 (ﬁkl“kﬁ"k lvkl) (AS)

o1 This equality can be also rewritten to use the horizontal Fourier transform of the horizontal
72 divergence ¢ and the horizontal vorticity . As these quantities are defined as a sum of derivatives

ns Of velocity components, their Fourier transform can be evaluated from algebraic expressions

A 2mi
Cri= Nir (kDry—liky), (A6)
704 A 2ni R )
5;1 = NAx (kuk,Z +lvk,l) . (A7)
»s These equations imply that
2
£ (82 )7+ 62 (82 )" = (NAX) (k2+12) (ﬁk,la;’l +9kﬁ;’l), (A8)
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which means, that Eq. (A5) can be replaced by equation

. 1 fi,z(fi,ﬂ* +Si,l($i,l)*

ki~ yN2 (13—&)2(k2+12)

(A9)

for k,[ =0,...,N —1, that can be simply decomposed into divergent and rotational part.
To obtain a 1D spectrum (either from Eq. (AS), or for the divergent and rotational part from

Eq. (A9)), we denote

2 21\’ 2,12
K E(m) (2+12) (A10)

the square of the size of horizontal wave vector corresponding to the horizontal wavelength
A=2n/K. As we need the spectrum with respect to the horizontal wavelength, we sum up
the values Ey , of specific energy with similar values of K (BlaZzica et al. 2013; Sun et al. 2017).

More precisely, we consider the sequence of horizontal wavenumbers

2n N
Kn:ml’l, n=1,2,...,[3]—1 (All)

with the upper bound corresponding to the Nyquist frequency. We further denote

2n

AK =
NAx

(A12)

the difference between two consecutive wavenumbers of this sequence. The specific horizontal

kinetic energy spectrum is then computed by Eq.

EK)= > Ef, (A13)
|(k.D)[AKEI,

where I, = (K, — AK/2,K,,+ AK/2) is an interval around K,,. The energy E*(K},) is not the radial
part of the 2D spectrum (in this case, the sum in the last equality would contain a factor K), but

rather an average of the energy over wavenumbers near K,,.

APPENDIX B

Gravity Wave Drag in Cartesian Coordinates
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We start by considering compressible inviscid flow on a rotating sphere. Using the standard
scale-analysis argumentation (Cushman-Roisin and Beckers 2011), it is possible to write governing

equation for the horizontal velocity components in the corotating coordinate system in the form

1
Ou+udu+voyu+wo.u = —;axp + fv (Bla)

1
OV +udv+voyv+wo,y =——0,p — fu, (B1b)
o

where u, v and w are zonal, meridional and vertical wind components, p is the pressure and f is
the Coriolis parameter.
We apply a linear perturbation method, assuming that the velocity components can be decom-

posed into a slowly varying mean flow and a small perturbation corresponding to the wave motion,

u={uy+u, (B2a)
v=)+V, (B2b)
w=w, (B2c¢)

where the mean vertical velocity component is taken zero. We further assume that the density
is a function of altitude only. In computations, this is achieved by taking integral mean value
of density p(z) over respective levels.

Next, we demonstrate the derivation for zonal momentum equation (B1a) only, the steps for the

meridional component are analogous. With use of the continuity equation
O+ (pu) + 0y (pv) +0(pw) =0, (B3)
it is possible to pass from (B1a) to the equation in the flux form

0 (pu) + 0 (pu”) + By (puv) + 0. (puw) = =8y p +p fv. (B4)
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7 Substituting the decomposition (B2) and the assumption on density, we get

8, ((u)+ )+, () +1')2 )+, (G +u) () +v)
1 A I4 4
+[_36z (0 ((u) +u’)w’) (BS)
1 4
=—=0p+f((V)+V).
p
7 At this stage, we average (B5) over area A of the selected horizontal domain, which will be denoted
xs by line over the quantities.
e With the assumption that the perturbations of velocity components have zero average over

= the domain at every altitude and that the velocity field is such that the interchange of derivative and

7 1ntegral is possible, the first term is averaged to
O (Gu) +u’) = 9y {u). (B6)

7 Using the fundamental theorem of calculus, the averages of the second and the third term in (BS5)

743 Al

on((wwr) = 5| [ wreire] (B7)

744
y2

AOETIOEDEE [ / (<u>+u'><<v>+v')dx] . (B8)

Y1

=5 For the last integral on the left-hand side of (B5), we have

16 Py i) w) ———a // p () +) w dxdy. (B9)

«  If we further consider the average of {-) (-)" over faces to be zero, the previous three averaged

77 terms can be thus simplified to

X2

o (G er) =5 | [ (@ wr)a] B10)

X1

748
y2

ay<<<u>+u'><<v>+v/>>:ﬂ / <<u><v>+u'v'>dx] , (B11)
y

1
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16 (P (u)y +u)w’) :——6 '[/pu'w’dxdy. (B12)

#e  To deal with the right-hand size of equation (BS5), we write the velocity as a sum of velocities
= of geostrophic and ageostrophic flow, u = ug +u,, v =vg +v,. Geostrophic flow is an idealized
7 stationary flow described by the balance of pressure and Coriolis force, considering advective terms

= to be negligible. From equations (B1), we have

P
w= P P (B13)

ST opf 8 pf

7 Therefore, averaged right-hand side of equation (B5) can be written as

’% kp+f (V) +V) = =fvg+ fv=Fva. B19

=  Altogether, the averaged equation (B5) has the form

) = [ [ (s <u’>2)dy]xz

X1
y2

_1 [/ (u) (v)+u'v')dx] (B15)

ha
- ——8 //pu'w'dxdy + fVa.

7 The terms on the right-hand side can be divided into terms corresponding to the wave motion
7 and terms corresponding to motions on larger scale. In particular, it is possible to identify three

7 terms that add up to the zonal component of MWD,

MWD, = - [/ (u") dy] , (B16a)
X
MWD, = -~ [ / u’v’dx] , (B16b)
11
MWD.. =~ =0 // pu'w dxdy. (B16¢)
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» The quantity MWDy, is the zonal derivative of the zonal flux of zonal wave momentum, MWD,
7 1S the meridional derivative of the meridional flux of zonal wave momentum and MWD, is the
% vertical derivative of the vertical flux of zonal wave momentum.

= Analogously, for the meridional velocity component, it is possible to get equation

X2

0= | [ €y dyL
y2
_% [/ ((v)2+(v’)2)dx] (B17)

1
11 —_—
———A(?Z//,ﬁv'w'dxdy—fua.
Ap

r We get terms of the meridional component of MWD,

1 2
MWD, = —— / u'vidy| (B18a)
A .
1 y2
MWD, =~ [ / (v’)zdx] , (B18b)
Y1
11 .,
MWD,y = —-—=0, [[ pv'w'dxdy. (B18c¢)
Ap
763 APPENDIX C
764 Algorithm for Cutoff Specification in Spectral Slope Method

s  Below we provide a programming language-neutral description of the structure of the algorithm

% for specification of cutoff in the spectral slope method:

767 Functions:

768 adjacent_left(point) — returns the point in the log spectrum to the left of the given point
769 adjacent_right(point) — returns the point in the log spectrum to the right of the given point
770 fit_line(set of points) — returns the line fit error

771 fit_line_slope(set of points, slope) — returns the line fit error with the given slope

772 algorithm(spectrum_plot) — maximal wavelength considered as GWs:
773 A1, Ei < the leftmost point in plot

774 AN, EN < the rightmost point in plot

40



775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

setL

{4, E{1}

setR = {[Ay, En]}
A1, Ei « adjacent_right([4y, Ei])
AN, En < adjacent_left([An, En])
while (setL U setR # all points)
fit_errlL = fit_line(setL U {[dy, En1})

fit_errR = fit_line_slope(setR U

{[Ar, ER1}, -5/3)
if (fit_errL < fit_errR):
setl « setL U {[A., Er1}
AL, Ep « adjacent_right([1, Er])
else
setR «— setR U [Ar, ER]
Ar, ER < adjacent_left([Ar, ERI])

return max(setR)
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