001     1006593
005     20230406201755.0
024 7 _ |a 2128/34262
|2 Handle
037 _ _ |a FZJ-2023-01734
041 _ _ |a English
100 1 _ |a Komeyer, Vera
|0 P:(DE-Juel1)187351
|b 0
111 2 _ |a General Assembly of the Joint Lab Supercomputing and Modeling for the Human Brain (SMHB)
|c Jülich
|d 2023-04-04 - 2023-04-05
|w Germany
245 _ _ |a The Confound Continuum: A 2D confounder assessment for AI in precision medicine
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1680700729_24895
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a This research was supported by the Joint Lab “Supercomputing and Modeling for the Human Brain”.
520 _ _ |a Confounding presents a major challenge in neuroimaging machine learning applications. Confounderscan influence both, brain-derived features and phenotypical targets1. Removing theirsignal from the data changes the feature-target relationship which ultimately affects the model interpretation.Additionally, confounders are not always straightforward to identify. To target this,we introduce the idea of a 2D Confound Continuum (CC). Its ordinate evaluates the strength ofthe statistical relationship between a confound and the feature(s)/target, thereby helping to betterunderstand its signal contributions to the data (statistical CC). Its abscissa defines the strength ofthe conceptual or biological relationship and hence the effects of removal on the model interpretation(conceptual CC). Sorting potential confounders within the CC can help to better understandtheir role and impact on building predictive models.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 1
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 1
700 1 _ |a Grefkes, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 3
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 4
856 4 _ |u https://juser.fz-juelich.de/record/1006593/files/Komeyer_Poster%20SMHB.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006593
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187351
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Department of Neurology,University Hospital Cologne and Medical Faculty, University of Cologne
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21