001006594 001__ 1006594
001006594 005__ 20231027114400.0
001006594 0247_ $$2doi$$a10.3390/catal13030468
001006594 0247_ $$2Handle$$a2128/34266
001006594 0247_ $$2WOS$$aWOS:000954086000001
001006594 037__ $$aFZJ-2023-01735
001006594 082__ $$a540
001006594 1001_ $$00000-0002-8514-9538$$aSiedentop, Regine$$b0
001006594 245__ $$aBayesian Optimization for an ATP-Regenerating In Vitro Enzyme Cascade
001006594 260__ $$aBasel$$bMDPI$$c2023
001006594 3367_ $$2DRIVER$$aarticle
001006594 3367_ $$2DataCite$$aOutput Types/Journal article
001006594 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689756245_9489
001006594 3367_ $$2BibTeX$$aARTICLE
001006594 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006594 3367_ $$00$$2EndNote$$aJournal Article
001006594 520__ $$aEnzyme cascades are an emerging synthetic tool for the synthesis of various molecules, combining the advantages of biocatalysis and of one-pot multi-step reactions. However, the more complex the enzyme cascade is, the more difficult it is to achieve adequate productivities and product concentrations. Therefore, the whole process must be optimized to account for synergistic effects. One way to deal with this challenge involves data-driven models in combination with experimental validation. Here, Bayesian optimization was applied to an ATP-producing and -regenerating enzyme cascade consisting of polyphosphate kinases. The enzyme and co-substrate concentrations were adjusted for an ATP-dependent reaction, catalyzed by mevalonate kinase (MVK). With a total of 16 experiments, we were able to iteratively optimize the initial concentrations of the components used in the one-pot synthesis to improve the specific activity of MVK with 10.2 U mg−1. The specific activity even exceeded the results of the reference reaction with stoichiometrically added ATP amounts, with which a specific activity of 8.8 U mg−1 was reached. At the same time, the product concentrations were also improved so that complete yields were achieved.
001006594 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001006594 536__ $$0G:(GEPRIS)422694804$$aDFG project 422694804 - SPP 2240: Bioelektrochemische und ingenieurwissenschaftliche Grundlagen zur Etablierung von Elektro-Biotechnologie für die Biosynthese - eBiotech (422694804)$$c422694804$$x1
001006594 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006594 7001_ $$0P:(DE-Juel1)191261$$aSiska, Maximilian$$b1$$ufzj
001006594 7001_ $$0P:(DE-HGF)0$$aMöller, Niklas$$b2
001006594 7001_ $$0P:(DE-Juel1)179217$$aLanzrath, Hannah$$b3
001006594 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b4
001006594 7001_ $$00000-0001-8534-0554$$aLütz, Stephan$$b5
001006594 7001_ $$00000-0002-6176-6224$$aRosenthal, Katrin$$b6$$eCorresponding author
001006594 773__ $$0PERI:(DE-600)2662126-5$$a10.3390/catal13030468$$gVol. 13, no. 3, p. 468 -$$n3$$p468 -$$tCatalysts$$v13$$x2073-4344$$y2023
001006594 8564_ $$uhttps://juser.fz-juelich.de/record/1006594/files/catalysts-13-00468-v2.pdf$$yOpenAccess
001006594 909CO $$ooai:juser.fz-juelich.de:1006594$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191261$$aForschungszentrum Jülich$$b1$$kFZJ
001006594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179217$$aForschungszentrum Jülich$$b3$$kFZJ
001006594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b4$$kFZJ
001006594 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001006594 9141_ $$y2023
001006594 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001006594 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006594 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001006594 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001006594 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006594 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001006594 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:10Z
001006594 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:10Z
001006594 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:10Z
001006594 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATALYSTS : 2022$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001006594 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001006594 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
001006594 980__ $$ajournal
001006594 980__ $$aVDB
001006594 980__ $$aI:(DE-Juel1)IBG-1-20101118
001006594 980__ $$aUNRESTRICTED
001006594 9801_ $$aFullTexts