001     1006594
005     20231027114400.0
024 7 _ |a 10.3390/catal13030468
|2 doi
024 7 _ |a 2128/34266
|2 Handle
024 7 _ |a WOS:000954086000001
|2 WOS
037 _ _ |a FZJ-2023-01735
082 _ _ |a 540
100 1 _ |a Siedentop, Regine
|0 0000-0002-8514-9538
|b 0
245 _ _ |a Bayesian Optimization for an ATP-Regenerating In Vitro Enzyme Cascade
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689756245_9489
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Enzyme cascades are an emerging synthetic tool for the synthesis of various molecules, combining the advantages of biocatalysis and of one-pot multi-step reactions. However, the more complex the enzyme cascade is, the more difficult it is to achieve adequate productivities and product concentrations. Therefore, the whole process must be optimized to account for synergistic effects. One way to deal with this challenge involves data-driven models in combination with experimental validation. Here, Bayesian optimization was applied to an ATP-producing and -regenerating enzyme cascade consisting of polyphosphate kinases. The enzyme and co-substrate concentrations were adjusted for an ATP-dependent reaction, catalyzed by mevalonate kinase (MVK). With a total of 16 experiments, we were able to iteratively optimize the initial concentrations of the components used in the one-pot synthesis to improve the specific activity of MVK with 10.2 U mg−1. The specific activity even exceeded the results of the reference reaction with stoichiometrically added ATP amounts, with which a specific activity of 8.8 U mg−1 was reached. At the same time, the product concentrations were also improved so that complete yields were achieved.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
536 _ _ |a DFG project 422694804 - SPP 2240: Bioelektrochemische und ingenieurwissenschaftliche Grundlagen zur Etablierung von Elektro-Biotechnologie für die Biosynthese - eBiotech (422694804)
|0 G:(GEPRIS)422694804
|c 422694804
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Siska, Maximilian
|0 P:(DE-Juel1)191261
|b 1
|u fzj
700 1 _ |a Möller, Niklas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lanzrath, Hannah
|0 P:(DE-Juel1)179217
|b 3
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 4
700 1 _ |a Lütz, Stephan
|0 0000-0001-8534-0554
|b 5
700 1 _ |a Rosenthal, Katrin
|0 0000-0002-6176-6224
|b 6
|e Corresponding author
773 _ _ |a 10.3390/catal13030468
|g Vol. 13, no. 3, p. 468 -
|0 PERI:(DE-600)2662126-5
|n 3
|p 468 -
|t Catalysts
|v 13
|y 2023
|x 2073-4344
856 4 _ |u https://juser.fz-juelich.de/record/1006594/files/catalysts-13-00468-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006594
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191261
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179217
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:57:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:57:10Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:57:10Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATALYSTS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21