
Citation: Siedentop, R.; Siska, M.;

Möller, N.; Lanzrath, H.; von Lieres,

E.; Lütz, S.; Rosenthal, K. Bayesian

Optimization for an ATP-Regenerating

In Vitro Enzyme Cascade. Catalysts

2023, 13, 468. https://doi.org/

10.3390/catal13030468

Academic Editors: Nicholas Harmer

and Jennifer Littlechild

Received: 3 February 2023

Revised: 19 February 2023

Accepted: 21 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Bayesian Optimization for an ATP-Regenerating In Vitro
Enzyme Cascade
Regine Siedentop 1 , Maximilian Siska 2 , Niklas Möller 1, Hannah Lanzrath 2 , Eric von Lieres 2 ,
Stephan Lütz 1 and Katrin Rosenthal 1,3,*,†

1 Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
2 Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology,

52428 Jülich, Germany
3 School of Science, Constructor University, 28759 Bremen, Germany
* Correspondence: krosenthal@constructor.university; Tel.: +49-421-200-3144
† Dedicated to Karl-Erich Jaeger for his pioneering contributions in the field of molecular enzyme technology.

Abstract: Enzyme cascades are an emerging synthetic tool for the synthesis of various molecules,
combining the advantages of biocatalysis and of one-pot multi-step reactions. However, the more
complex the enzyme cascade is, the more difficult it is to achieve adequate productivities and product
concentrations. Therefore, the whole process must be optimized to account for synergistic effects.
One way to deal with this challenge involves data-driven models in combination with experimental
validation. Here, Bayesian optimization was applied to an ATP-producing and -regenerating enzyme
cascade consisting of polyphosphate kinases. The enzyme and co-substrate concentrations were
adjusted for an ATP-dependent reaction, catalyzed by mevalonate kinase (MVK). With a total of
16 experiments, we were able to iteratively optimize the initial concentrations of the components
used in the one-pot synthesis to improve the specific activity of MVK with 10.2 U mg−1. The
specific activity even exceeded the results of the reference reaction with stoichiometrically added ATP
amounts, with which a specific activity of 8.8 U mg−1 was reached. At the same time, the product
concentrations were also improved so that complete yields were achieved.

Keywords: biocatalysis; in vitro biotransformation; multi-enzymatic reaction; enzyme cascade; one-pot
synthesis; ATP regeneration; polyphosphate kinases; Bayesian optimization; Gaussian process regression

1. Introduction

Reactions catalyzed by enzymes can enable syntheses with favorable features such
as high selectivity and an environmentally friendly process with mild reaction conditions
or low waste burdens [1]. The combination of several sequential enzymatic reactions
in one-pot, called enzyme cascade, further reduces the by-product formation and the
need for intermediate isolation [2]. Enzyme cascades can be used for the synthesis of a
variety of compounds ranging from bulk chemicals to high value compounds, such as
active pharmaceutical ingredients (APIs). Though, in spite of the examples for syntheses
by enzyme cascades with impressive results [3], a common challenge is their process
optimization [4]. Enzyme engineering can lead to desired properties in the catalyst’s
activity or stability [5], but optimization of the whole reaction system is also required. The
balancing of different catalytic properties such as pH, temperature profiles and relative
concentrations, optimal reaction conditions and often the elaboration of cofactor supply are
necessary and can lead to a large number of required experiments in order to determine the
optimal process conditions. Here, in silico modelling can support targeting experiments
and help to substantially reduce the experimental effort.

There are several methods to create these models. Design of experiments is often the
method of choice to identify components that have a large impact on the system. How-
ever, the algorithms do not account for previous gained knowledge about the parameter–
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objective relationship [6]. Mechanistic models can then be used to study reactions in silico,
e.g., to evaluate time-dependent intermediate levels of enzyme cascades. The knowledge
gained through these simulations can then be used as the basis for process optimization.
However, this approach requires kinetic understanding and specific data of every involved
enzyme [7]. This challenge can be addressed by conducting numerous experiments or
by using data of homologous enzymes, if available [8]. In both cases, knowledge is usu-
ally obtained from isolated enzymes, omitting the complexity and synergistic effects of
dynamically behaving enzyme cascades with multiple involved components.

Data-driven approaches, such as Bayesian optimization [9], provide alternatives to
mechanistic modeling that do not require detailed prior understanding of the underlying
biological and chemical processes. Instead, probabilistic surrogate models, most com-
monly Gaussian process regression (GPR), are applied to model the relationship between
independent variables (e.g., concentrations or pH) and dependent variables (e.g., yield
or productivity). GPR inherently quantifies the uncertainty of the model predictions.
Acquisition functions such as expected improvement (EI) utilize these predictions and
associated uncertainty measures to propose further measurements with the highest po-
tential of information gain. As more experimental data become available, the surrogate
model is iteratively refined and new measurement points are repeatedly proposed until a
stopping criterion is reached, e.g., a desired value and certainty of the process optimum.
Therefore, the acquisition function balances the trade-off between parameter regions with
high predicted values (exploitation) and regions with high uncertainty due to low sam-
pling density (exploration). While Bayesian optimization does not require any mechanistic
understanding of the optimized process, incorporating prior knowledge into the surrogate
model substantially increases search efficiency. It allows to simultaneously adjust multiple
parameters, instead of one factor at a time. Bayesian optimization has been applied across
disciplines, e.g., experimental materials science or bioprocess development [10,11] and
enzymatic single-step reactions [12], but never in the context of process optimization for
enzyme cascades.

In this study, we have optimized an ATP-producing and -regenerating enzyme cascade
by performing Bayesian optimization, combining GPR with EI. Adenosine triphosphate
(ATP) as an energy-rich cofactor plays an important role in many enzyme cascades. For
industrially relevant cascades, this expensive cofactor must be regenerated to provide
economical syntheses [13,14]. We used mevalonate kinase (MVK) as an ATP acceptor, an
enzyme that catalyzes the phosphorylation of mevalonate (MVA) to mevalonate phosphate
(MVAP) using ATP as a phosphate donor. The specific activity of MVK had to be improved
to reach comparable results as with stoichiometrically added ATP. Over the course of three
iterations using Bayesian optimization, we were able to reach specific activities for MVK
that slightly exceeded the results with stoichiometric ATP using the ATP-producing and
-regenerating system. Additionally, we monitored the product concentrations, which could
be improved as well.

2. Results and Discussion
2.1. Specification of the Cascade and Its Optimization

MVK is a key enzyme of the isoprenoid pathway and is found in a variety of organisms,
from bacteria to mammals [15]. The enzyme has been successfully used in in vivo and
in in vitro enzyme cascades to synthesize isoprenoids, such as farnesene, limonene or
patchoulol [5,16,17]. In our laboratory, we also used the enzyme MVK for an enzyme
cascade in which ATP is required as a cofactor in several reaction steps. We were able to
show in kinetic simulations that the regeneration of ATP can have a positive effect on the
performance of a farnesyl pyrophosphate (FPP)-producing cascade [18]. In the present
study, we chose one of the ATP-dependent key reactions—namely, the phosphorylation
of MVA to MVAP—to optimize the regeneration of ATP. In other studies, this reaction
was shown to be the rate-limiting step in the isoprenoid pathway [19]. The production
and regeneration of ATP are catalyzed by two polyphosphate kinases (PPKs), AjPPK2
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and SmPPK2, from adenosine monophosphate (AMP) with polyphosphate (polyP) as
a phosphate donor (Figure 1). These enzymes have mainly been studied for cofactor
regeneration [20–22], but applications for (non-natural) nucleotide syntheses are reported
as well [23–25]. MVK converts mevalonate to mevalonate phosphate while consuming
ATP (Figure 1).
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Figure 1. Enzyme cascade for adenosine triphosphate (ATP) production and regeneration and
mevalonate phosphate (MVAP) production. Two polyphosphate kinases (PPKs) phosphorylate
adenosine monophosphate (AMP) to ATP with polyphosphate (polyP) as phosphate donor. ATP is
consumed by mevalonate kinase (MVK) to convert mevalonate (MVA) to MVAP.

The goal of this study was to determine optimal initial concentrations of selected
reaction components to maximize the performance of the enzyme cascade. The concentra-
tions of the regenerating enzymes and co-substrate were chosen as variable parameters to
achieve the highest specific activity of the target reaction, namely, the phosphorylation of
MVA. The tested concentration ranges of the three parameters AMP, AjPPK2, and SmPPK2
are given in Table 1.

Table 1. Optimization parameters and their tested concentration window.

Parameter Tested Range

AMP concentration 10–50 mM
AjPPK2 concentration 1–20 mg L−1

SmPPK2 concentration 10–200 mg L−1

The AMP concentration was set between 10 and 50 mM. The upper limit corresponds
to stoichiometric amounts of MVA. The lower limit requires the mandatory regeneration
of ATP by SmPPK2 to allow for the complete conversion of MVA to MVAP. The enzyme
concentrations were chosen based on previous studies, which showed a sufficient ATP
supply at concentrations of 5 and 50 mg L−1 for AjPPK2 and SmPPK2, respectively [20].
A ten-fold activity of AjPPK2 with 18.7 ± 0.8 U mg−1 compared to 1.9 ± 0.4 U mg−1 for
SmPPK2 was confirmed for the reaction conditions in a combined approach of both enzymes
(Supplementary Materials). The concentration ranges were, therefore, set to 1–20 mg L−1

and 10–200 mg L−1 for AjPPK2 and SmPPK2, respectively. In these concentration ranges,
the optimal concentrations for ATP production and regeneration were determined to
achieve the highest MVK activity. The initial concentrations of the components of the target
reaction MVK and MVA, as well as polyP, were kept constant in order to use this reaction
as an indicator for the improvement of the ATP production and regeneration system. The
concentration of MVK was set to 200 mg L−1, of MVA to 50 mM, and of polyP to 55 mM.

2.2. Iterative Optimization for Specific Activity of MVK

To build the first GPR model with which upcoming experiments can be designed,
initial data are required. Therefore, a quasi-random Sobol sequence was used to distribute
the initial data points over the parameter space (Table 2). Sobol sequences have a low
discrepancy, i.e., the probability of samples to be in any subregion of the parameter space
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is proportional to the size of that subregion [26]. Six experiments were chosen for an
appropriate level of information and a manageable number of experiments in the laboratory.

Table 2. Conditions of the Sobol experiments as parameter concentrations and the respective results
of specific activity and product concentration. Enzyme assays were performed in triplicates with
purified enzymes in 1.5 mL Eppendorf tubes. Enzyme assays contained 0.2 mg mL−1 of MVK, 50 mM
of MVA, 55 mM of polyP, 3 mM of Na3VO4, 0.043 mM of NADP+, 0.43 mM of CoA, 170 mM of
glucose, 200 mM of NaOAc, and 20 mM of MgCl2 in 0.35 mL of the reaction volume, filled up with
activity buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM MgCl2, pH 7.5). AMP, AjPPK2,
and SmPPK2 were added in various concentrations, except in the reference assay where 55 mM ATP
was added. The reaction was incubated at 30 ◦C in a multirotator with 30 rpm. Samples were taken
regularly, and enzymes were inactivated at 95 ◦C for 5 min.

Experiment Conditions Results

AMP
[mM]

AjPPK2
[mg L−1]

SmPPK2
[mg L−1]

Average Specific Activity
[U mg−1]

MVAP Concentration after 24 h
[mM]

Reference - - - 8.8 ± 1.4 44.0 ± 5.9

Sobol 1 27.5 10.5 105.0 9.2 ± 0.5 33.9 ± 14.9
Sobol 2 38.8 5.8 152.5 10.2 ± 0.3 35.7 ± 8.9
Sobol 3 16.3 15.3 57.5 8.5 ± 0.6 26.9 ± 1.9
Sobol 4 44.4 17.6 33.8 4.9 ± 2.9 23.3 ± 13.7
Sobol 5 10.6 12.9 176.3 9.9 ± 1.8 26.9 ± 1.0
Sobol 6 47.2 2.2 116.9 7.2 ± 0.6 44.2 ± 10.6

Table 2 provides an overview of the parameter concentrations of the Sobol sequence
(Sobol 1–6), as well as their results. In addition, a reference experiment without cofactor
regeneration, but with stoichiometric ATP amounts in a slight excess of 55 mM was con-
ducted to gain a benchmark for the MVK activity. A specific activity of 8.8 ± 1.4 U mg−1

was reached for the MVK (Table 2, Entry 1). Furthermore, the product concentration was
determined after 24 h, when the reaction was completed. For the reference experiment, a
MVAP concentration of 44.0 ± 5.9 mM was reached. In the Sobol experiments, no complete
conversion of substrate was observed, as MVA was still present (Supplementary Materials).

The experiments show that the enzyme and co-substrate concentrations for ATP pro-
duction and regeneration have an impact on the specific activity of the ATP-dependent
reaction. Three experiment designs proposed by the Sobol sequence show higher levels of
activity already (Sobol 1, 2 and 5) for reactions with ATP production and the regeneration
system compared to the reference experiment with a stochiometric addition of ATP. The
values obtained are only slightly higher and are within the standard deviation. Neverthe-
less, it seems possible to achieve at least equally high specific activities compared to the
reference experiment with a stoichiometric addition of ATP. Sobol 2 with 10.2 ± 0.3 U mg−1

and with 16% higher activity has the best improvement for the optimization indicator. The
lowest MVK activity is observed for Sobol 4 with almost 45% reduced specific activity
compared to the reference with 4.9 ± 2.9 U mg−1. The product concentrations of the Sobol
experiments are mostly lower than the reference value. The lowest MVAP concentration
is reached in Sobol 4 with 23.3 ± 13.7 mM and it reaches up to 44.2 ± 10.6 mM in Sobol
6, which is similar to the reference. A correlation of the achieved product concentrations
to the specific activity cannot be observed and no conclusion can be made concerning the
effect of the reaction conditions. Further experiments during the optimization process
increase the statistical relevance of relations with which conclusions can be made.

With the data obtained by the initial Sobol experiments being the input data set, the
iterative optimization using GPR and EI was performed. Each iteration used the whole
data set of the previous rounds as the basis for the design of new measurement points.
A number of three experiments was chosen for each iteration round and a total of three
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rounds were performed. The experimental conditions and results of each iteration are
shown in Table 3.

Table 3. Conditions of the experiments as parameter concentrations and the respective results of
the iterative optimization approach. Enzyme assays were performed in triplicates with purified
enzymes in 1.5 mL Eppendorf tubes. The enzyme assays contained 0.2 mg mL−1 of MVK, 50 mM of
MVA, 55 mM of polyP, 3 mM of Na3VO4, 0.043 mM of NADP+, 0.43 mM of CoA, 170 mM of glucose,
200 mM of NaOAc, and 20 mM of MgCl2 in 0.35 mL of the reaction volume, filled up with activity
buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM MgCl2, pH 7.5). AMP, AjPPK2, and
SmPPK2 were added in various concentrations, except in the reference assay where 55 mM of ATP
was added. The reaction was incubated at 30 ◦C in a multirotator with 30 rpm. Samples were taken
regularly, and enzymes were inactivated at 95 ◦C for 5 min.

Experiment Conditions Results

AMP
[mM]

AjPPK2
[mg L−1]

SmPPK2
[mg L−1]

Average Specific Activity
[U mg−1]

MVAP Concentration after 24 h
[mM]

Reference - - - 8.8 ± 1.4 44.0 ± 5.9

Iteration 1.1 13.2 8.1 118.1 10.2 ± 1.5 34.8 ± 5.0
Iteration 1.2 49.7 18.8 11.4 3.9 ± 0.3 22.6 ± 1.4
Iteration 1.3 50.0 1.0 199.9 6.8 ± 0.4 18.5 ± 0.4

Iteration 2.1 24.2 5.0 31.8 4.1 ± 0.8 31.7 ± 4.5
Iteration 2.2 18.2 4.8 100.6 3.9 ± 0.3 20.9 ± 0.7
Iteration 2.3 37.0 3.1 107.1 4.5 ± 2.0 18.4 ± 0.4

Iteration 3.1 25.8 13.1 198.0 8.1 ± 1.0 50.8 ± 5.6
Iteration 3.2 15.8 9.0 138.0 8.0 ± 0.8 51.9 ± 3.6
Iteration 3.3 29.4 16.2 120.6 5.8 ± 0.5 52.0 ± 2.1

In addition, for a better overview, the data were plotted in Figure 2 and presented
together with the data from the Sobol experiments. In the first iteration round, a specific
activity of 10.2 ± 1.5 U mg−1 was reached (Iteration 1.1), which is comparable to the
Sobol experiment with the highest specific activity (Sobol 2). Interestingly, the enzyme
concentration required for ATP regeneration was reduced by 20%, which improves the
product-to-enzyme ratio favorably; this is also in view of the potential application on a
larger scale and the environmental impact in terms of the material that has to be used to
produce a certain amount of the product [27–29]. The experiment was conducted with low
concentrations of AMP with 13.2 mM, which indicates that AMP is not a limitation if enough
AjPPK2 and SmPPK2 are present. For iteration 1.2 and 1.3, the concentration limits of the
enzymes were tested by the algorithm at the maximum addition of AMP, which resulted in
a reduction in the specific activity to 3.9 ± 0.3 U mg−1 and 6.8 ± 0.4 U mg−1, respectively.
In the second iteration, the algorithm explored a region of the parameter space with low
sampling density by proposing experiments characterized by low concentration values
for AjPPK2. Neither the specific activity nor the product concentration were improved.
In fact, the specific activities were rather in the lower range compared to the previous
experiments. Still, valuable information could be gained for the third and final iteration
round. Here, specific activities were improved compared to iteration 2 and the same values
as in the reference assay were achieved with 8.1 ± 1.0 U mg−1 and 8.0 ± 0.8 U mg−1,
respectively. The product concentrations reached higher values than the reference assay
in every experiment of the third iteration, from 50.8 ± 5.6 mM to 52.0 ± 2.1 mM MVAP.
These values are slightly higher than the maximum possible 50 mM product. However,
due to the standard deviation, the excess of the maximum possible concentration is not
significant. Even though this was not the optimization goal, an improvement in product
concentration could be achieved. This was, hence, a rather random result but could be
included in Bayesian optimization in the future.
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Figure 2. Results of the optimization approach with specific activities (a) and MVAP concentrations
after 24 h (b) normalized to the reference assay. Enzyme assays were performed in triplicates with
purified enzymes in 1.5 mL Eppendorf tubes. Enzyme assays contained 0.2 mg mL−1 of MVK, 50 mM
of MVA, 55 mM of polyP, 3 mM of Na3VO4, 0.043 mM of NADP+, 0.43 mM of CoA, 170 mM of
glucose, 200 mM of NaOAc, and 20 mM of MgCl2 in 0.35 mL of the reaction volume, filled up with
activity buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM MgCl2, pH 7.5). AMP, AjPPK2,
and SmPPK2 were added in various concentrations, except in the reference assay where 55 mM of
ATP was added. The reaction was incubated at 30 ◦C in a multirotator with 30 rpm. Samples were
taken regularly, and enzymes were inactivated at 95 ◦C for 5 min.

The final GPR model was applied to visualize the probability density of the maximum
predicted activity, as illustrated in Figure 3. This visualization facilitates the identification
of the optimal initial concentrations of the selected reaction components—namely, AMP,
AjPPK2, and SmPPK2—in the presence of uncertainty. To determine the optimal concentra-
tions, 10,000 samples of the final GPR model were analyzed. The resulting analysis allows
for the identification of the regions of the parameter space which are more probable to
correspond to the optimal experimental conditions. The different hues in the representation
each signify 20% of the cumulative probability mass. As such, we can determine with
20% confidence that the optimum lies within the dark blue region of the parameter space.
Additionally, a plateau, denoted by the darker blue hues, is predicted, where high activities
can be obtained. These regions are dominant with higher amounts of SmPPK2, from ~130
to 200 mg L−1 and between ~5.75 and 18 mg L−1 of AjPPK2. AMP has less influence on the
specific activity of MVK if enough enzyme is present.
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AjPPK2, and SmPPK2. The contours encode the probability mass for the experiment conditions
corresponding to the maximum specific activity derived from 10,000 samples of the final GPR model.
Each shade encodes 20% of the cumulative probability mass.

With a total of 16 experiments, we succeeded in optimizing the enzymatic ATP produc-
tion and regeneration system to improve the specific activity of the ATP-degrading enzyme
MVK. At the same time, we were able to increase the product concentration, although
it was not included as an objective function in the optimization. The simultaneous opti-
mization of both goals could be performed using Bayesian optimization, if necessary [12].
However, the product concentration improved simultaneously, which might be due to
the shift of the equilibrium by a better provision of ATP. The specific activity achieved
with ATP-production and -regeneration even exceeded the reference assay, in which ATP
was added in stoichiometric amounts. Therefore, the regeneration system is obviously
not a limitation for the ATP-dependent reaction. As recently shown, the equilibrium of
the reactions catalyzed by PPK2 is on the ATP side and thus supports the ATP-producing
reaction [30]. Additionally, possible inhibitions by large amounts of ATP are bypassed
by the regeneration of the nucleotide. Using low amounts of nucleotide increases the
cofactor utilization in the regeneration cycle, which is an important factor for a larger scale
application of regeneration systems [31]. The low impact of the amount of initial AMP
concentrations on the specific activity of MVK allows for the addition of low amounts,
resulting in a favorable increase in the cofactor utilization through the recycling reaction.

Interestingly, not only one optimal condition was found, but two parameter compo-
sitions were found within the measurement inaccuracy, thus leading to the same specific
activity of 10.2 U mg−1 and a similar production concentration (Table 2, Sobol 2 and Table 3,
Iteration 1.1). This indicates that there is not just one condition under which maximum
MVK activity is achieved, but also a parameter plateau that allows for maximum activ-
ity, as also illustrated in Figure 3. The enzyme and co-substrate concentrations were not
in close range, suggesting that the maximal reaction velocity was reached or that there
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was a different limiting factor. The specific activity might even be higher with higher
amounts of substrate under these conditions. In another study, more than one optimal
condition was found using Bayesian optimization [32]. Media optimization for protein
production in microorganisms was performed, and as a result, an optimal parameter region
was determined.

In conclusion, Bayesian optimization has successfully guided us through process
optimization for an ATP-producing enzyme cascade with only few experiments. In other
studies with three parameters using a traditional design of experiments approach, larger
numbers of experiments were necessary to find the optimum. For the optimal nutrition sup-
ply of Streptomyces marinensis for neomycin production, 20 experiments were needed [33].
A three-step chemical synthesis of the broad-spectrum antibiotic GV143253A needed 10 ex-
periments for the first reaction step and another 20 experiments for the second step of the
reaction [34]. With our data-driven approach for optimization, a quantitative prediction
with uncertainty quantification of the multi-parameter system was achieved, with collec-
tive information gained as all parameters were changed simultaneously. Interconnected
influences were considered and the parameter region of the optimal composition for ATP
production and regeneration was determined. Changes in the enzyme and co-substrate
concentrations led to a significant variation in the enzyme cascade performance. The
enzyme concentrations had a major influence on the MVK catalyzed reaction, especially.

3. Materials and Methods
3.1. Materials

Chemicals were purchased from Acros Organics (ThermoFisher Scientific, Waltham,
MA, USA), AppliChem (AppliChem GmbH, Darmstadt, Germany), Merck (Merck KGaA,
Darmstadt, Germany), Roth (Carl Roth, Karlsruhe, Germany), Santa Cruz Biotechnology
(Santa Cruz Biotechnology, Inc., Dallas, TX, USA), ThermoFisher (ThermoFisher Scientific,
Waltham, MA, USA), and VWR (VWR international GmbH, Darmstadt, Germany).

3.2. Enzyme Production

The PPKs were expressed as described by Becker et al. [20]. MVK of Methanosarcina mazei
was expressed in Escherichia coli BL21 Gold (DE3). After chemical transformation, a single
colony was used for the preculture. A total of 10 mL of LB medium (10 g L−1 of tryptone,
5 g L−1 of yeast extract, 10 g L−1 of NaCl, pH 7.0) was inoculated and incubated at 37 ◦C
and 200 rpm. The main culture of 0.25 L of LB medium with 50 µg mL−1 of kanamycin and
1 mM of MgCl2 was inoculated to an OD600 of 0.01 and grown at 30 ◦C and 200 rpm. At an
OD600 of 0.6, the culture was incubated for 15 min on ice and 0.1 mM of IPTG was added.
Protein expression took place at 30 ◦C and 200 rpm for 9 h. The harvested cell pellets were
stored at −20 ◦C.

Cell pellets were resuspended in 15 mL of lysis buffer (40 mM of Tris-HCl, 10 mM of
NaCl, 10% glycerol, pH 8.0) for cell disruption. Sonication was performed in five cycles
for 30 s on ice. Cell debris was removed by ultracentrifugation at 43,000× g for 20 min at
4 ◦C. The supernatant was sterile-filtered and loaded on an equilibrated 1 mL of HisTrap™
FF crude column (GE Healthcare, Solingen, Germany). After washing with five column
volume of washing buffer (100 mM of K2HPO4, 500 mM of NaCl, 10 mM of imidazole,
10% glycerol, pH 8.0), protein was eluted with elution buffer (20 mM of Tris-HCl, 150 mM
of NaCl, 300 mM of imidazole, pH 7.4) in 6 × 1 mL fractions. The protein concentration
was determined by Bradford assay with bovine serum albumin as reference and the frac-
tions with the highest concentrations were used for buffer exchange by size exclusion
chromatography. A PD-10 column (GE Healthcare, Solingen, Germany) was equilibrated
with Tris-HCl buffer (100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, pH 7.5) and 2.5 mL of
the protein solution was eluted with 3.5 mL of the Tris-HCl buffer. The protein solution
was concentrated using Amicon® Ultra Centrifugal Filters (10 kDa, Millipore, Merck KGaA,
Darmstadt, Germany) and the protein concentration was determined. Enzymes were stored
at −80 ◦C.
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3.3. Enzyme Assays

Enzyme assays were performed with purified enzymes in 1.5 mL Eppendorf tubes.
They were prepared following the experiments of the reference FPP-producing cascade [18]
with additional substances, which is why all enzyme assays contained 3 mM of Na3VO4,
0.043 mM of NADP+, 0.43 mM of CoA, 170 mM of glucose, 200 mM of NaOAc, and 20 mM
of MgCl2 in 0.35 mL of the reaction volume, filled up with activity buffer (100 mM of
Tris-HCl, 150 mM of NaCl, 10% glycerol, 20 mM of MgCl2, pH 7.5). Assays for PPK activity
measurements additionally contained 50 mg L−1 of SmPPK2, 5 mg L−1 of AjPPK2, 10 mM
of AMP, and 30 mM of polyP. Assays with MVK contained 0.2 mg mL−1 of MVK, 50 mM
of MVA, and 55 mM of polyP with 55 mM of ATP in the reference assay. AMP, AjPPK2,
and SmPPK2 were added in various concentrations. The reaction was incubated at 30 ◦C in
a multirotator with 30 rpm. Samples were taken regularly, and enzymes were inactivated
at 95 ◦C for 5 min.

3.4. Analytics

Samples were centrifuged and diluted with water prior to injection to fit in the linear
range of the calibration curve. Nucleotides were analyzed by high performance liquid chro-
matography (HPLC). A Knauer Azura HPLC system (KNAUER GmbH, Berlin, Germany)
consisting of an autosampler (AS 6.1L), pump (P 6.1L), column oven (CT 2.1), and a wave-
length detector (MWD 2.1L) was used. The ISAspher 100-5 C18 AQ column (250 × 4 mm,
Isera, Düren, Germany) was used for separation at 30 ◦C. The injection volume was 10 µL.
The gradient consisted of mobile phase A (0.06 M K2HPO4 and 0.04 M KH2PO4) and mobile
phase B (95% acetonitrile, 5% water): 0 min: 100% A; 3 min: 100% A; 10.5 min: 82% A, 18%
B; 16 min: 50% A, 50% B; 18 min: 100% A; 23 min: 100% A at a flow rate of 1 mL min−1.
The analytes were detected at a wavelength of 254 nm. Specific activity of AjPPK2 was
determined from AMP and of SmPPK2 from ATP. MVA and MVAP were analyzed using a
LC-MS (1260 Infinity II LC system combined with 6120 Quadrupole MS (Agilent, Santa
Clara, CA, USA)) with a SeQuant® ZIC®-pHILIC 5 µm polymer 200 Å, 150 × 2.1 mm col-
umn (Merck KGaA, Darmstadt, Germany). The column oven was heated to 40 ◦C and the
flow rate was set to 0.2 mL min−1. The injection volume was set to 3 µL and the following
gradient of mobile phase A (10 mM NH4Ac, pH 9.2) and mobile phase B (acetonitrile) was
used for separation: 0 min: 10% A; 1 min: 10% A; 26 min: 60% A; 33 min: 10% A; 50 min:
10% A. The MS measurement was performed in negative mode and the parameters for
electron spray ionization (ESI) were set to the following: drying gas temperature: 350 ◦C,
nebulizer pressure: 35 psig, drying gas flow: 12 L min−1, capillary voltage: 3500 V. Analytes
were detected in the selected ion mode (SIM) with m/z of 147.0 and 147.1 during the first
15 min to detect MVA and 226.9, 227, 227.1, 455, 455.1 for monomeric and dimeric MVAP
from 15 to 33 min. Specific activities were determined from substrate concentrations during
the first 20 min of the reaction.

3.5. Data Analysis

GPR can be understood as a probability distribution over functions, defined by a mean
function and a covariance function. The mean function encodes the prior belief on the basic
behavior of the modeled process. The GPR fit to input data is influenced by a covariance
function and a length scale prior, of which quantify the variation in function values. Prior
to fitting the Gaussian process, experimental data were normalized on the interval [0 1].
The Gaussian process was initially parameterized by a constant zero mean function. The
sum of a Matérn and a white noise kernel were used as the covariance function to account
for the limited prior understanding of the relation between the varied process parameters
and the observed specific activity. A length scale prior of 0.5 was chosen to sufficiently
explore the parameter space by Bayesian optimization.

All processing of experimental data and the proposal experimental design configura-
tions in this study were performed with an in-house-developed Python package, Planalyze,
which is available on request. This package utilizes recent versions of Python 3.9, NumPy
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1.22 [35], pandas 1.4 [36], matplotlib 3.5 [37], SciPy 1.9 [38] and related packages. GPR
models were created with the GaussianProcessRegressor class of scikit-learn 1.1 [39]. Visual-
izations were performed with seaborn 0.12 [40].

4. Conclusions

Bayesian optimization was applied to determine the best parameters set for achieving
the highest MVK activities and product titers for the studied enzyme cascade in the desired
operational window. This study demonstrates the usefulness of in silico tools for the
optimization of multi-parameter systems such as increasingly complex enzyme cascades.
The presented approach reaches the optimization goal in an experimentally reduced and
resource-efficient way. All parameters were simultaneously varied and experiments were
not replicated to facilitate a better balance of exploration and exploitation of the searched
parameter space. The more data are collected, the more refined the GPR model is and
predictions by the acquisition function get more precise. The data obtained from the
conducted experiments can even be used for further optimization tasks for the same enzyme
cascade, making it even more efficient to achieve other objectives. It is demonstrated
that data-driven models can boost the tedious optimization process of multi-parametric
systems. Their application is not limited to enzyme cascades, but can be adapted for various
other processes.
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