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Abstract—On the way to the exascale era, millions of parallel
processing elements are required. Accordingly, one major chal-
lenge is the ever-widening gap between computational power and
underlying I/O systems. To bridge this gap, I/O resources must be
used efficiently, thus a profound I/0O knowledge is required. In this
work, we analyze state-of-the-art approaches that can be applied
to improve the general I/O understanding and performance.
Based on our analysis, we present an automated, modular, tool-
agnostic I/0 analysis workflow and a prototype implementation
that can be used to generate, extract, store, analyze, and use I/O
knowledge in a structured and reproducible way.

Index Terms—I1/0, HPC, Workflow, Performance Analysis,
Knowledge Sharing, I/O Understanding, I/O Optimization.

I. INTRODUCTION

For the execution of scientific applications and workflows
on high-performance computing (HPC) and modular super-
computing [1] environments, up to several millions of parallel
processing elements can be involved. Consequently, applica-
tions can process and generate up to several petabytes of data.
Typically, computing resources on HPC systems are distributed
via resource managers such as Slurm. To request and allocate
resources, HPC applications are submitted as batch jobs and
are exclusively executed on the allocated resources. However,
due to the ever-widening gap between compute power and 1/0O
systems, and the shared nature of I/O subsystems, access to
the I/O resources has become a major bottleneck [2]-[4] and
the observed I/O performance at the application-level can be
much lower than the theoretical peak bandwidth.
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Fig. 1: Overview of the parallel I/O architecture.

As shown in Figure 1, the changing landscape of emerg-
ing hybrid HPC workloads has even further intensified the
complexity of parallel I/O systems. There is a wide range of
software and hardware components involved across different
abstractions for performing parallel I/O. A typical I/O stack
consists of high-level libraries, middleware, operating system

functions, parallel file systems, and storage hardware [5]-
[8]. Each of these layers offer corresponding configuration or
optimization options [7]-[9]. To simplify data management
and enable parallel I/O, scientific users often rely on high-
level 1/O libraries [10], [11] such as HDF5 [12], ADIOS [13],
or PnetCDF [14]. Typically, these libraries support parallel
access to the data and are built atop MPI-IO, where MPI-
IO in turn uses POSIX to communicate with the underlying
storage system [2]. Accordingly, such high-level I/O libraries
also provide the ability to specify configurations for the lower
layers and thus are used to improve I/O performance.

A recent study [15] has shown that HPC storage systems
may no longer be dominated by write I/O. Emerging HPC
workloads now also encompass advanced and big data an-
alytics, machine learning, deep learning, and data-intensive
workflows. Due to diverse I/O behavior of HPC applications
and the intensifying complexity of the I/O stack, a crucial
problem is the lack of I/O knowledge and the abundance of
tunables that can be accessed via different APIs [4], [16], [17].
Since most users lack a deeper understanding of the underlying
I/O subsystem [16], tunable options such as the parallel file
system (PFS) striping settings, MPI-IO hints, and I/O library
optimizations are oftentimes not used. Even though there is
a vast amount of performance analysis, measurement, and
visualization tools [18]-[20], users need to choose the best-
suited one for their specific use case, which is essential for
connecting a performance bottleneck with its tuning solution.
Therefore, most users are forced to rely on the default I/O
settings, which can result in wasting valuable I/O resources.

Given the missing ability to easily share insights with other
users observing similar application or environment character-
istics, I/O knowledge is often disregarded after a one-time
use. To continuously grow the I/O knowledge base of the
HPC community and to establish a standardized and tool-
independent approach, we propose the following contributions:

1) A generic workflow that can be universally applied and

modularly extended to improve the basic I/O understand-
ing for single application runs and HPC system work-
loads. The workflow is software and hardware agnostic.

2) A prototype implementation that showcases the applica-

bility of the proposed workflow. It enables scientific users
to easily analyze and optimize the I/O behavior of their
applications in an automated manner without any deeper
understanding of the parallel I/O and storage system.



II. ANALYSIS OF RELATED WORK

To address the aforementioned problems, a vast amount
of European and international tools and frameworks already
exist to collect and analyze the I/O behavior of applications.
The analysis of existing work is crucial to design a generic
workflow to drive the I/O knowledge cycle.

A. Performance Analysis and Visualization Tools

1) Scalable 1/0 for Extreme Performance (SIOX):
SIOX [21] is a multipurpose environment for capturing system
activities and gaining knowledge from the captured informa-
tion, with a particular focus on I/O. To obtain an overview
of all I/O calls on a HPC file system and to use them for
I/0O optimization, standardized interfaces are first created to
collect performance data from all abstraction levels. The data
is then compressed and stored permanently. Finally, collected
performance data are analyzed and correlated with observed
access patterns to gain knowledge about system characteristics
and causal relationships.

2) DXT Explorer: Since Darshan [22] is one of the most
widely used I/O profiling tool, a special tool was developed to
narrow the gap between trace analysis and the actual applying
of tuning parameters. DXT Explorer [3] is an interactive log
analysis tool, which uses Darshan’s extended tracing module
(DXT) [23]. By visualizing the I/O behavior of the application,
performance bottlenecks can be identified, and optimization
parameters can be applied. Since the tool requires DXT log
as input for the analysis, DTX Explorer is only available for
Darshan and therefore is not compatible with other tracing and
profiling tools, as well as output of established benchmarks.

3) SCTuner: To optimize both the I/O library and the
underlying I/O stack at application runtime, SCTuner [4] was
proposed as an auto tuner integrated into the I/O library
itself. To profile the behavior of individual I/O subsystems
with different configurations across I/O layers, a statistical
benchmarking method was introduced. For this purpose, a
group of IOR [24] benchmark experiments for specific I/O
patterns with a set of tuning parameters like nodes, core per
node, burst size, aggregators, and buffer size across I/O layers
were first conducted. Subsequently, the benchmark results are
normalized so that the used configuration can be mapped to
a relative performance. For the optimization, an I/O pattern
extractor was implemented in HDF5. When a file is opened
for the first time, it extracts information about its I/O patterns
as well as the number of compute nodes used, the number of
MPI ranks, and the underlying configuration of the file system.
In case of a parallel I/O call, information including burst size
and the start offset of each burst as well as the total data
size are extracted. Finally, when an I/O call is completed,
the information is passed to the tuner. For the optimization
at runtime, Tang et al. plan to use techniques such as online
gradient descent to implement an online performance tuner.

4) H5Tuner: Due to the optimization possibilities on paral-
lel file systems and I/O middleware, while hiding the complex-
ity of the I/O stack from the developers, Behzad et al. proposed
an autotuning system for optimizing I/O performance, I/O

performance modeling, I/O tuning, and I/O patterns [17]. The
framework H5Tuner is able to dynamical set the parameters
of different levels of the I/O stack through HDFS initialization
function. For applying the configuration provided by H5Tuner
to the autotuning system, the authors utilize tracing tools to
extract the application’s I/O kernel and execute the kernel with
a preselected training set of tunable parameters.

B. User-Centric System Fault Identification using 10500

Since I/O performance is difficult to predict unless the
entire resources are exclusively assigned to a single user,
an 10500-based workflow has been proposed by Liem et al.
[25]. The 10500 benchmark [26] is nowadays an established
I/0O benchmark and used to identify performance boundaries
for optimized and suboptimal applications. The benchmark
consists of data and metadata benchmarks [27]. This approach
is based on the idea of exploring the 10500 benchmark to
provide users realistic expectations regarding their applica-
tion’s I/O and optimization strategy based on the system’s
performance. To formulate a two-dimensional bounding box
for user expectation, four benchmark scenarios from 10500,
i.e., IOR-hard, IOR-esay, mdtest-hard and mdtest-easy are
used. Afterward, the application’s I/O performance is mapped
into the bounding box and tuned if necessary during the last
step in a certain dimension. In addition to the performance
assessment through the visual representation of the bounding
box, anomalies can also be detected through this approach.

C. Discussion

In terms of I/O optimization, profound knowledge is re-
quired to make the right decision in the optimization process.
Given the lack of I/O understanding among the scientific
community, these tools support the user in different ways.
Each of them has strengths and weaknesses and is therefore
only suitable for certain use cases. Due to the different aims
and implementations, the approaches are not compatible with
each other and do not offer the ability to share the obtained
knowledge, i.e., the obtained knowledge is discarded after the
one-time use for a specific use case. Given the importance of
knowledge sharing in the HPC community, especially with the
raise of emerging workloads, supporting the exchange of the
I/O knowledge obtained and thus helping users and system
engineers is the main focus of this work.

III. THE I/O KNOWLEDGE CYCLE WORKFLOW

Whereas the applied approaches and goals of the previously
discussed work differ greatly from one another, certain phases
can be identified in all approaches. In general, at the beginning
of the workflow, information is generated in different ways,
i.e., a knowledge generation phase takes place. While in [17],
[23], and [21] the knowledge is generated based on traces,
[25] and [4] use benchmarks for the knowledge generation,
i.e., different approaches use different data sources. Given
the different foci of the analyzed approaches, a phase is
differentiated by where the relevant knowledge is extracted



and persisted in different ways, e.g., as a simple log file in the
system or as structured data in a specific database.

Before the actual knowledge can be used, it must be
understood, i.e., analyzed. Depending upon the approach, more
or less support is provided for the analysis. In SIOX [21],
the knowledge is provided over a reporter and the GUI to
the database, whereas DXT [23] has a more mature GUI,
where the collected information can be visualized. Similarly,
[25] visualizes the knowledge through a simple web GUI. In
contrast, [4] and [17] offer less support for the analysis and
the collected knowledge needs to be visualized manually first.

Finally, all approaches apply the obtained knowledge in a
number of ways. While the last phase in [17] and [4] optimizes
the I/O performance by tuning HDF5 parameters, the focus in
[23], [21] and [25] is to create a better I/O understanding and
thus improve the I/O performance of an application.

Generation

i

Usage

Extraction

\

Persistence

N\

Fig. 2: Overview of the proposed I/O knowledge cycle.

From this, it can be deduced that basic knowledge must
be established and analyzed first in order to further apply
it, hence creating an iterative cyclic process. We call this
iterative approach I/0 knowledge cycle. Since each phase is
interdependent and has an enormous impact on the quality of
the results in the subsequent phase, it is particularly important
to consider the use of I/O knowledge as a generic workflow. To
keep our workflow as generic as possible and to support both
existing and new approaches, our workflow can be divided
into five generic phases, as depicted in Figure 2:

1) Generation Phase: To build a knowledge base, the I/O
information needs to be collected first in a structured
way, for example via benchmarks or simulations, but also
via monitoring tools. However, the collected data often
contains too much information, it is often generated for a
single use and then discarded after the usage for perfor-
mance tuning or anomaly detection. Since the generation
phase is crucial for the subsequent phases, the generation
needs to be carried out in a verified environment so that
the knowledge is reproducible and representative.

2) Extraction Phase: To transform the collected information
into knowledge, metrics of interest are systematically
extracted from the corresponding output or log file,
according to the methodologies applied for the knowledge
generation. Since various methodologies are allowed,
various metrics can be extracted from different sources.
At the end of this phase, the captured knowledge can
be mapped to a data structure or a model depending
on its further use. Regarding machine learning based
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Fig. 3: I/O performance impact factors.

I/O optimization and I/O predication, promising train-
ing models and predication models can be established
from the collected knowledge. In terms of use cases
demonstrated in this work, the obtained knowledge, i.e.,
performance metrics and system information are mapped
to a Python object called Knowledge.

3) Persistence Phase: To be able to apply the obtained
knowledge and share it with the HPC community, cor-
responding knowledge is stored as structured data sets in
this phase. For this, obtained knowledge can be saved,
e.g., as a CSV file or as a database entry. Depending on
the methodology, a mapping between the knowledge and
database scheme is also required in this phase.

4) Analysis Phase: In the fourth phase, the gained knowl-
edge is further evaluated and analyzed. Typically, in
order to better understand the impact of different I/O
performance factors (see Figure 3), metrics of interest
are presented in a well-organized way or are visualized
as simple plots, interactive charts, or even complex dash-
boards. Therefore, in the analysis phase, simple use cases
such as anomaly detection can be derived.

5) Usage Phase: In the last phase, the gained knowledge is
used for its actual purpose or for generating new knowl-
edge. The I/O knowledge can be used for different use
cases such as I/O optimization, performance prediction,
anomaly detection, and I/O pattern analysis, but also for
workload generation. Thus, this iterative cyclic process
is either re-relaunched or terminated. Depending on the
implementation and the use case, our analysis workflow
can be used in both online and offline fashion.

IV. HIGH-LEVEL SYSTEM DESIGN

Since different tools and technologies are applied in differ-
ent phases, a modular architecture is chosen to implement the
knowledge cycle as a generic workflow framework. Figure 4
illustrates the high-level architecture. While the generation and
extraction of the knowledge usually is performed on HPC and
supercomputer environments, the analysis of the knowledge
can be done by a web-based tool on a local computer. Hence,
independent phases can be isolated from each other, which
enables a flexible and modular architecture. Also, the storing
of knowledge can be done in two different environments.
The data can be persisted either in (1) a local database or
(2) globally by using a public database. Accordingly, the
separation of databases gives us the flexibility to allow our
tools to be applied in both public and private or combined
environments. Therefore, the user can decide whether or not
to share the knowledge and which knowledge to share.
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Fig. 4: A modular high-level architecture for various knowledge use cases.

Knowledge can be used and applied in different ways, as
indicated in Figure 4. Consistent with our highly modular
architecture, further modules such as the optimization module
can be integrated in the future with minimal effort. In the
following, five example use cases are briefly discussed:

I/O optimization: Given the complexity of the parallel I/O
stack and the lack of optimization knowledge, automated tools
can help the user to exploit I/O resources more efficiently.
To achieve near-optimal use of I/O and storage resources, the
I/O knowledge collected in our workflow can be applied in an
offline fashion as well as an online fashion for I/O optimization
by using an I/O pattern extractor. For example, in the offline
mode, the users can be suggested with suitable configurations
via a recommendation module, which can be applied manually
for individual runs. The offline optimization process can be
further automated through additional modules, including high-
level libraries such as presented in [4], [12].

I/O performance predication: Since performance estima-
tion requires a lot of expertise, machine and deep learning
approaches can be applied to predict the I/O performance. Typ-
ically, the actual performance often differs from the theoretical
performance and its accuracy heavily depends on the training
data sets. Using our generic workflow, representative and
reproducible data sets can be created for predictive modeling
and then used to predict I/O performance. Furthermore, by
integrating approaches such as [25] in our workflow, upper
and lower performance boundaries can be determined and thus
provide the user with a realistic expectation.

Anomaly detection: To ensure the reliability and repro-
ducibility of the system, anomalies must be detected. While
anomalies can be caused by several aspects such as workload
distribution, application errors, hardware failures, and incorrect
system configuration, the majority of them affect the overall
performance. As the visualization of the I/O knowledge and
performance bounding box are central parts of our workflow,
anomalies can be detected in a simple and straightforward way.
To identify possible causes, our workflow offers the ability to
extract additional information such as file system information,
and overall system statistics and configuration. It is planned to
collect further information from workload managers such as
Slurm, thus providing context between anomaly and causes.

I/0 pattern analysis: A deep understanding of the I/O
pattern helps to better exploit resources as well as improve the
requirements for HPC storage resources as outlined by Layton
[28]. Since our generic workflow is tool agnostic, it allows the
integration of user-specific monitoring, profiling, and charac-
terization tools. Thus, I/O patterns can be clearly identified
and the performance impact can be better understood. For
the validation of the correlation between I/O patterns and
performances, benchmarks can provide further insights.

Workload generation: Considering the iterative large-scale
I/O performance evaluation process [2], the workload, specif-
ically the generation of the workload, plays a crucial role and
therefore strongly influences the evaluation results. For this
purpose, the knowledge obtained from our generic workflow
can be used to, e.g., generate new benchmark configurations,
but also synthetic workload for simulation and thus drive the
simulation or initialize new evaluation processes.

V. EARLY PROTOTYPE IMPLEMENTATION

In the following, we present an early prototype implemen-
tation of the high-level architecture presented in Figure 4.

A. Phase I: Knowledge Generation

For the knowledge generation, different experiments and
application runs can be performed on a specific target system.
To emulate the I/O patterns of scientific applications, we use
different community benchmarks such as IOR, which provides
a flexible way of measuring I/O performance with different
configuration options. IOR provides access to shared files both
independently and collectively, and supports the use of various
I/0 interfaces, such as POSIX, MPI-IO, and HDF5 [29].

Furthermore, to ensure reliability and reproducibility of
systematic I/O benchmarking, we use JUBE [30] to initial-
ize our workflow. JUBE is a generic, lightweight, config-
urable benchmarking environment that supports systematic,
automated execution, monitoring and analysis of application
execution. Accordingly, we define a set of I/O patterns as
JUBE parameters in the JUBE configuration file and use them
for the execution of IOR in the respective iteration. By using
the JUBE configuration, a set of benchmarks is executed for
a given I/O pattern. JUBE creates a subdirectory for each
benchmark iteration and stores the corresponding output.



With the increasing importance and acceptance of the I0500
benchmark and its applicability, e.g., in [25], the 10500
benchmark has also been integrated with eleven additional test
cases as a separate knowledge generator and to demonstrate
the easy expandability of our workflow.

To cover real I/O patterns like checkpoint and restart for
large simulations, our prototype implementation additionally
integrates HACC-IO [31], which supports different I/O inter-
faces (i.e., POSIX, MPIIO) and file access modes (i.e., single-
shared-file, file-per-process, and one-file-per-group).

Finally, in order to demonstrate the modularity and ex-
pandability of our proposed workflow, we support Darshan
as an additional data source. I/O characteristics can either
be recorded for a particular scientific application or system-
wide with Darshan. This process can also be automated via
the JUBE environment. In terms of the bursty I/O workloads
of modern HPC applications, Darshan and corresponding
application can be used in the generation phase.

B. Phase II: Knowledge Extraction

To extract the previously generated knowledge from the
output of the benchmark runs, we implement a Python-based
tool called knowledge extractor. It can be run manually or
automatically, i.e., executed in a workflow together with the
knowledge generation phase. For automated execution, the
knowledge extractor is defined in the JUBE configuration file
as an application to be executed in addition to the benchmarks
such as IOR and 10500. After the knowledge generation phase
is completed, the extractor is started sequentially. By default,
the tool expects the path of the output as a parameter. If the
path is not specified, our tool automatically searches in the
JUBE workspace for available benchmark results.

Essentially, the tool extracts different benchmark statistics
and transforms the metrics of interest into a knowledge object.
Our knowledge object currently consists of the parameters
used, i.e., parameters describing the I/O pattern and the ob-
tained benchmark results. IOR, for example, offers the ability
to define the number of iterations of read and write operations,
providing individual read and write operations. Therefore, the
summary over the defined number of iterations is included in
the results for a knowledge object.

In addition, the Python-based extractor can identify the
used parallel file system settings and the system settings at
runtime. For example, for BeeGFS, the file system settings
Entry type, EntrylD, Metadata node, Stripe pattern details
can be collected. The support of other popular parallel file
systems is planned for future releases. For the system statistics
including processor cores, processor architecture, processor
frequency, but also the cache and memory sizes, the extractor
uses the data from /proc/. These statistics are also included
in the knowledge object. Since we want to fully integrate
Darshan support in the future, Darshan logs must be extracted
during the knowledge extraction phase accordingly. To enable
this, PyDarshan [32] is also integrated in the extractor and can
interpret Darshan log as well.

C. Phase IlI: Knowledge Persistence

For persisting our knowledge object, we are using the
DB-API 2.0 interface for SQLite [33] databases to perform
database specific operations. Regarding the data security, our
tool provides the ability to store the obtained knowledge either
directly as a local SQLite database or by specifying a SQL
connection URL remotely.

To persist knowledge objects, we currently use four database
tables: performances, summaries, results, and filesystems. In
the performances table, the I/O patterns, including benchmark-
specific configurations, e.g., the IOR configuration such as
API, testFileName, filePerProc, start/end time, are stored and
each knowledge object is identified by a unique ID. For
each knowledge an entry in the table summaries exist, i.e.,
a summary is uniquely assigned to a knowledge object by
the foreign key performance_id. Since IOR supports different
I/O interfaces, a summary is stored for each operation with the
corresponding interface over the specified iteration. Each sum-
mary contains performance statistics such as max/mean/min
bandwidth and the number of operations. In order to provide
a rich set of visualization options, we have decided to store
individual results, instead of storing only the summary of the
performance statistics. The relationship between results and
summaries is established by the foreign key summaries_id. At
least one detailed result exists for each summary. In addition,
depending on the file system used, a knowledge object can
be extended by available user-level file system information
such as chunk size, number of storage target, RAID scheme,
storage pool. The information is then stored as an entry in the
filesystems table.

As various benchmarks are used in 10500 for different
test cases, e.g., mdtest, IOR, and find, we decide to first
separate our knowledge object from the knowledge object used
in 10500. Thus, IO500 related results are stored in separate
tables such as, IOFHsScores, IOFHsTestcases, IOFHsOptions,
IOFHsResults, and IOFHsRuns. While for each 10500 run an
entry IOFHsRuns table and IOFHScorces table is created, the
number of performed test case may vary depending on the
setting. Accordingly, IOFH _id is applied as foreign keys for
mapping to individual IO500 runs. In addition to the score, for
each test case applied, options and the corresponding result are
stored in IOFHsOptions table and IOFHsResults table. Also,
system information extracted in the previous phase belongs to
10500 knowledge object and must be persisted accordingly. To
assign the single system information to an 10500 knowledge
object, the IOFH_Id is used.

D. Phase IV: Knowledge Analysis

To analyze the knowledge gained in previous phases, our
implementation includes the knowledge explorer, a web-based
analysis tool. Users can either use global data, i.e., knowledge
stored in our database, or local data, i.e., manually uploaded
knowledge objects. The knowledge explorer can be used to
analyze and visualize performance statistics of an individual
benchmark or application run or aggregated over multiple
iterations and runs. To analyze a single run, our tool offers



the knowledge viewer feature. By selecting the command used
for the benchmark, all related benchmarks and file system
information, as well as the corresponding benchmark summary
are displayed immediately. Because a benchmark run typically
includes several iterations, our knowledge explorer offers the
ability to display detailed performance statistics for each
operation and iteration. For both single or multiple benchmark
runs, the tool provides the ability to visualize results as an
interactive graph and export it as an image file.

An essential feature is the comparison between different
knowledge objects. To use the comparison feature, our tool
offers the ability to select any number of knowledge objects
and compares them based on defined metrics. Therefore, the
user can select the axes of the chart at runtime to perform the
analysis over various aspects. For the y-axis applied option
and for x-axis focused metrics can be selected. Also, when
selecting a knowledge object, an overview chart is automati-
cally created at the same time, where the individual knowledge
object are displayed on the basis of their throughput with
corresponding min, max, mean as a boxplot.

For 10500, we provide an extra viewer in our knowledge
explorer. This is similar to the viewer we have designed
for IOR knowledge object, with the differences that it can
additionally visualize score value and different test cases
for each 10500 execution. Since our tool is currently under
construction, we are already using a different library for the
visualization for the I0500 viewer. To find similar knowledge
object and perform fine-grained evaluations, we also support
filtering and sorting of knowledge object in the comparison
view. Screenshots of the previously mentioned features can be
found on our companion repository as well.

E. Phase V: Knowledge Usage

As can be seen in Figure 2, in the last phase of our
generic workflow, the obtained knowledge can be applied to
different use cases, including I/O optimization, performance
predication, anomaly detection, I/O pattern analysis, workload
generation, and even the generation of new knowledge.

To demonstrate the applicability, we test our prototype im-
plementation on the FUCHS-CSC cluster at Goethe University.
This cluster provides a total of 198 nodes, each with 2x Intel
Xeon E5-2670 v2 and 128 GB RAM. Accordingly, 20 cores
per node and a total of 3960 cores can be allocated. In addition,
FUCHS-CSC supports BeeGFS as parallel file system and
through InfiniBand (FDR) offers an aggregated bandwidth of
27 GB/s [34]. In this work, we are focusing on two use cases.

1) Example I — New Knowledge Generation: As depicted
in Figure 4, knowledge can be used to generate further
knowledge. Hence we performed a series of benchmark
experiments using IOR as explained in Section V-A. Up
to 4 nodes, i.e., 80 cores, are allocated and BeeGFS is
used for the execution. For this use case, the command
ior —a mpiio -b 4m -t 2m -s 40 -F -C -e -1
6 —o /scratch/fuchs/zhuz/test80 -k was run.

Since read or write are not explicitly specified, IOR executes
the command once with read and once with write per iteration.
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Fig. 5: Performance analysis through multiple iterations.

MPI-IO is used for parallel I/O and each task reads and writes
40 times 4MB contiguous bytes, with 2MB as transfersize
and enabled flags file-per-process, reorderlasksConstant and
fsync. To see the variation between each iteration, the iteration
count is set to 6 for this experiment. After the results are
collected and the relevant knowledge is stored in the database,
new knowledge can be created.

For the generation of new knowledge, our web-based tool
provides the functionality to generate new benchmark setups
based on existing knowledge and can be extended to gen-
erate JUBE configuration additionally. The user can apply
the generated command to re-run the workflow. First, the
previously applied command is selected and then loaded
from the corresponding configuration in the view and can
be modified as required. Afterward, the new command can
be created by clicking “create configuration”. With the just
created configuration, a new benchmark run can be started
on the corresponding system and thus new knowledge can be
generated. Due to the generic workflow, this process can be
repeated as often as required.

2) Example Il — Anomaly Detection: The 1/O knowledge
cycle can also be used to detect I/O anomalies. In this use case,
I/0O performance anomalies can be identified via the knowledge
explorer in several ways.

As previously described, our tool supports the user through
the visualization and comparison function in order to improve
the understanding of I/O performance. In our previous ex-
periment in Section V-EI, performance variation between the
individual iterations of the benchmark run can be identified. As
can be seen in Figure 5, the throughput in MiB and the number
of ops for reads and writes over 6 iterations are visualized
as an interactive chart. While the average throughput for
write for iteration 1, 3, 4, 5, 6 is 2850 MiB, the throughput
for iteration 2 is 1251 MiB, which is less than half the
average throughput. Similarly, this phenomenon is evident
when looking at the number of operations. Furthermore, other
metrics like closeTime, latency, totalTime, wrRdTime can be
displayed to support this observation and thus measurement
errors can be excluded. Therefore, through our visualization,
anomalies can be quickly and clearly identified.

A further ability to detect anomalies is the use of the
bounding box [25] approach. Our tool supports the extraction
of 10500 knowledge, thus the ability to create a bounding box
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Fig. 6: Anomaly detection through 10500 boundary testcases.

to estimate the realistic I/O performance for a given system.
To demonstrate this functionality, we use the benchmark setup
previously described in Section V-EI.

The 10500 benchmark is run with 40 cores on FUCHS-
CSC. The results are used to create a knowledge object and
stored in our database for further analysis by the knowledge
explorer. A bounding box can be created by applying certain
test cases regarding the I/O performance of FUCHS-CSC.
Since we currently do not support the visualization of the
bounding box, we present the proposed approach of Liem et
al. in a simplified way using an existing visualization example
for I0500. Whereas in the original idea for the bounding
box, medtest (easy, hard) and ior (easy, hard) are applied, we
only utilize the ior-easy and ior-hard as a one dimensional
bounding box for demonstration purposes. Therefore, as in
Figure 6 illustrated, while the variance for ior-easy write and
ior-hard write is quite large, the throughput for ior-easy read
and ior-hard read remains the same. A possible cause for the
bad ior-easy read result could be a broken node, which needs
to be analyzed in more detail in the future.

VI. OUTLOOK

Since our proposed analysis workflow consists of five
phases, the workflow and corresponding tools can be indi-
vidually improved and extended in each of these phases. In
general, further approaches and tools can be considered in
the future, e.g., for knowledge generation. Consequently, our
extractor needs to be extended with appropriate interfaces.
With regard to the more converging HPC community from
different countries, it is also meaningful to integrate further
parallel file systems such as Lustre [35], IBM Spectrum Scale
[36], and OrangeFS [37] for our extractor and thus to enable
a deep insight into the performance impact of parallel file
systems. Regarding the persistence phase, in the future, we
plan to create more unified knowledge object, which will
support more benchmarks with different output formats.

Considering knowledge analysis and the use case anomaly
detection, the GUI of the knowledge explorer will be extended.
This allows a unified presentation of I/O knowledge, but also
the support of additional chart types, including heat map
and bounding box. Moreover, another important aspect is
to support the ability to add knowledge manually through
the web-based user interface. Thus, allows a unified analysis

process. In order to use the knowledge for I/O optimization,
the tool needs to be extended by further optimization modules
such as I/O pattern extractor and recommendation module in
the future. Furthermore, the knowledge objects can be used
as training data for linear regression analysis to make I/O
performance predictions.

VII. CONCLUSION

With the growing gap between computational power and
underlying storage systems [2], [4], and the lack of I/O
expertise [4], [16], I/O resources need to be used efficiently,
and the required knowledge needs to be easily accessible. For
this purpose, we present in this paper a generic workflow
(section III), and a possible implementation (section V) that
realizes each phase of the knowledge cycle.

Through our generic workflow, I/O knowledge can be gen-
erated, extracted, persisted, and analyzed in a structured and
reproducible manner and therefore can be applied to specific
usage scenarios such as anomaly detection, new knowledge
generation, but also I/O optimization. Through the experi-
ments and resulting knowledge, we can clearly show that our
implementation is fully compatible with the I/O knowledge
cycle. Hence, we are confident that our proposed workflow
and corresponding implementation can provide a deeper 1/O
understanding to the user with minimal prior knowledge,
thus enabling a more efficient use of the underlying I/O
resources. Further information, including additional screen-
shots, are available on our companion GitHub repository:
https://github.com/lalilalalalu/I0-Knowledge.git.
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