001     1006618
005     20230725203735.0
024 7 _ |a 10.48550/ARXIV.2302.14398
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01751
|2 datacite_doi
037 _ _ |a FZJ-2023-01751
100 1 _ |a Aldarawsheh, Amal
|0 P:(DE-Juel1)185991
|b 0
|e Corresponding author
245 _ _ |a A spin model for intrinsic antiferromagnetic skyrmions on a triangular lattice
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1690265559_5478
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Skyrmions are prospected as the potential future of data storage due to their topologically protected spin structures. However, traditional ferromagnetic (FM) skyrmions experience deflection when driven with an electric current, hindering their usage in spintronics. Antiferromagnetic (AFM) skyrmions, consisting of two FM solitons coupled antiferromagnetically, are predicted to have a zero Magnus force, making them promising candidates for spintronic racetrack memories. Currently, they have been stabilized in synthetic AFM structures, i.e. multilayers hosting FM skyrmions, which couple antiferromagnetically through a non-magnetic spacer, while recent first-principles simulations predict their emergence in an intrinsic form, within an row-wise AFM single monolayer of Cr deposited on PdFe bilayer grown on Ir(111) surfaces. The latter material forms a triangular lattice, where single and interlinked AFM skyrmions can be stabilized. Here, we explore the minimal Heisenberg model enabling the occurrence of such AFM solitons and the underlying phase diagrams by accounting for the interplay between the Dzyaloshinskii-Moriya and Heisenberg exchange interactions, as well as the magnetic anisotropy and impact of magnetic field. By providing the fundamental basis to identify and understand the behavior of intrinsic AFM skyrmions, we anticipate our model to become a powerful tool for exploring and designing new topological magnetic materials to conceptualize devices for AFM spintronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Sallermann, Moritz
|0 P:(DE-Juel1)174583
|b 1
|u fzj
700 1 _ |a Abusaa, Muayad
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 3
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2302.14398
856 4 _ |u https://juser.fz-juelich.de/record/1006618/files/2302.14398.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006618
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185991
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21