001006619 001__ 1006619
001006619 005__ 20240226075500.0
001006619 0247_ $$2Handle$$a2128/34326
001006619 037__ $$aFZJ-2023-01752
001006619 041__ $$aEnglish
001006619 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj
001006619 1112_ $$aJoint European Magnetic Symposia 2022$$cWarsu$$d2022-07-24 - 2022-07-29$$gJEMS2022$$wPoland
001006619 245__ $$aEmergence  of  zero-field  non-synthetic  single  and  catenated antiferromagnetic skyrmions in thin films
001006619 260__ $$c2022
001006619 3367_ $$033$$2EndNote$$aConference Paper
001006619 3367_ $$2DataCite$$aOther
001006619 3367_ $$2BibTeX$$aINPROCEEDINGS
001006619 3367_ $$2DRIVER$$aconferenceObject
001006619 3367_ $$2ORCID$$aLECTURE_SPEECH
001006619 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1681977183_23446$$xOther
001006619 520__ $$aSkyrmions are topologically protected spin textures that are envisioned to be the next generation of bits. However, conventional ferromagnetic (FM) skyrmions are deflected when an electric field is applied, which limits optimal implementation  in future  spintronic devices. In contrast, antiferromagnetic (AFM) skyrmions, which consist of two FM solitons coupled antiferromagnitically, are predicted to have zero net magnus force , and this makes them promising candidates for spintronic racetrack memories. So far these have been stabilized in synthetic AFM structures , i.e.multilayers hosting FM skyrmions, which couple antiferromagnetically through a non-magnetic spacer. Here, based on density functional theory (DFT) in conjunction with atomistic spin dynamics, we investigate systematically and predict the presence of chiral intrinsic AFM structures in specific and realistic combination of thin films of Cr/Pd/Fe deposited on heavy substrates composed of Ir(111) on triangular lattice, with fcc stacking.
001006619 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001006619 7001_ $$0P:(DE-HGF)0$$aFernandes, Imara Lima$$b1
001006619 7001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b2
001006619 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b3$$ufzj
001006619 7001_ $$0P:(DE-HGF)0$$aMuayadAbusaa5$$b4
001006619 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
001006619 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6$$eCorresponding author$$ufzj
001006619 8564_ $$uhttps://juser.fz-juelich.de/record/1006619/files/JEMS2022.pptx$$yOpenAccess
001006619 909CO $$ooai:juser.fz-juelich.de:1006619$$pdriver$$pVDB$$popen_access$$popenaire
001006619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ
001006619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b3$$kFZJ
001006619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001006619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b6$$kFZJ
001006619 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001006619 9141_ $$y2023
001006619 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006619 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001006619 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001006619 9801_ $$aFullTexts
001006619 980__ $$aconf
001006619 980__ $$aVDB
001006619 980__ $$aUNRESTRICTED
001006619 980__ $$aI:(DE-Juel1)IAS-1-20090406
001006619 980__ $$aI:(DE-Juel1)PGI-1-20110106