001006621 001__ 1006621 001006621 005__ 20230420201823.0 001006621 037__ $$aFZJ-2023-01754 001006621 041__ $$aEnglish 001006621 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj 001006621 1112_ $$aDeutsche Physikalische Gesellschaft-Frühjahrstagungen 2021$$cGermany$$d2021-03-01 - 2021-03-04$$gSKM2021$$wGermany 001006621 245__ $$aAntiferromagnetic skyrmions on a triangular lattice 001006621 260__ $$c2021 001006621 3367_ $$033$$2EndNote$$aConference Paper 001006621 3367_ $$2BibTeX$$aINPROCEEDINGS 001006621 3367_ $$2DRIVER$$aconferenceObject 001006621 3367_ $$2ORCID$$aCONFERENCE_POSTER 001006621 3367_ $$2DataCite$$aOutput Types/Conference Poster 001006621 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1681982622_23254$$xOther 001006621 520__ $$aSkyrmions are topologically protected spin textures that are envisionedto be the next generation of bits. However, conventional ferromagnetic(FM) skyrmions are deflected when an electric field is applied,which limits their use in spintronic devices. In contrast, antiferromagnetic(AFM) skyrmions, which consist of two FM solitonscoupled antiferromagnitically, are predicted to have zero net magnusforce [1], and this makes them promising candidates for spintronic racetrackmemories. So far these have been stabilized in synthetic AFMstructures [2], i.e. multilayers hosting FM skyrmions, which coupleantiferromagnetically through a non-magnetic spacer. Using ab initiocalculations in conjunction with atomistic spin dynamics, we investigatesystematically and predict the presence of chiral intrinsic AFMstructures in specific and realistic combination of thin films depositedon heavy substrates.[1] X. Zhang et al. Sci. Rep. 6, 24795 (2016), [2] Legrand et al. Nat.Mat., 19, 34 (2020). Work funded by the PGSB (BMBF–01DH16027)and Horizon 2020–ERC (CoG 681405–DYNASORE). 001006621 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001006621 7001_ $$0P:(DE-HGF)0$$aFernandes, Imara$$b1 001006621 7001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b2 001006621 7001_ $$0P:(DE-HGF)0$$aAbusaa, Muayyad$$b3 001006621 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b4$$ufzj 001006621 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b5$$eCorresponding author$$ufzj 001006621 8564_ $$uhttps://juser.fz-juelich.de/record/1006621/files/aa.jpg$$yRestricted 001006621 8564_ $$uhttps://juser.fz-juelich.de/record/1006621/files/aa.gif?subformat=icon$$xicon$$yRestricted 001006621 8564_ $$uhttps://juser.fz-juelich.de/record/1006621/files/aa.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001006621 8564_ $$uhttps://juser.fz-juelich.de/record/1006621/files/aa.jpg?subformat=icon-180$$xicon-180$$yRestricted 001006621 8564_ $$uhttps://juser.fz-juelich.de/record/1006621/files/aa.jpg?subformat=icon-640$$xicon-640$$yRestricted 001006621 909CO $$ooai:juser.fz-juelich.de:1006621$$pVDB 001006621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ 001006621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b4$$kFZJ 001006621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b5$$kFZJ 001006621 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001006621 920__ $$lyes 001006621 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 001006621 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 001006621 980__ $$aposter 001006621 980__ $$aVDB 001006621 980__ $$aI:(DE-Juel1)IAS-1-20090406 001006621 980__ $$aI:(DE-Juel1)PGI-1-20110106 001006621 980__ $$aUNRESTRICTED