001006622 001__ 1006622
001006622 005__ 20240226075500.0
001006622 037__ $$aFZJ-2023-01755
001006622 041__ $$aEnglish
001006622 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj
001006622 1112_ $$aDPG-Frühjahrstagungen$$cRegensburg$$d2022-09-04 - 2022-09-09$$gDPG2022$$wGermany
001006622 245__ $$aEmergence of zero-field non-synthetic single and catenated antiferromagnetic skyrmions in thin films
001006622 260__ $$c2022
001006622 3367_ $$033$$2EndNote$$aConference Paper
001006622 3367_ $$2DataCite$$aOther
001006622 3367_ $$2BibTeX$$aINPROCEEDINGS
001006622 3367_ $$2DRIVER$$aconferenceObject
001006622 3367_ $$2ORCID$$aLECTURE_SPEECH
001006622 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1681970875_1475$$xOther
001006622 520__ $$aAntiferromagnetic (AFM) skyrmions are envisioned as ideal localized topologicalmagnetic bits in future information technologies. In contrast to ferromagnetic (FM)skyrmions, they are immune to the skyrmion Hall effect [1, 2], might offer potential terahertzdynamics [3] while being insensitive to external magnetic fields and dipolar interactions.Although observed in synthetic AFM structures [4] and as complex meronic textures inintrinsic AFM bulk materials [5, 6], their realization in non-synthetic AFM films, of crucialimportance in racetrack concepts, has been elusive. In this work [7], we unveil their presencein a row-wise AFM Cr film deposited on PdFe bilayer grown on fcc Ir(111) surface. Usingfirst-principles, we demonstrate the emergence of single and strikingly interpenetratingcatenated AFM skyrmions, which can coexist with the rich inhomogeneous exchange field,including that of FM skyrmions, hosted by PdFe. Besides the identification of an idealplatform of materials for intrinsic AFM skyrmions, we anticipate the uncovered knottedsolitons to be promising building blocks in AFM spintronics.[1] Barker and Tretiakov, Physical Review Letters 116, 147203 (2016).[2] Zhang, Zhou and Ezawa, Scientific Reports 6, 1 (2016).[3] Gomonay, Baltz, Brataas, Tserkovnyak, Nature Physics 14, 213 (2018).[4] Legrand et al., Nature Materials 19, 34 (2020).[5] Gao et al., Nature 586, 37 (2020).[6] Jani et al., Nature 590, 74 (2021).[7] Aldarawsheh et al., ArXiv:2202.12090 (2022).
001006622 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001006622 7001_ $$0P:(DE-HGF)0$$aFernandes, Imara Lima$$b1
001006622 7001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b2
001006622 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b3$$ufzj
001006622 7001_ $$0P:(DE-HGF)0$$aMuayadAbusaa5$$b4
001006622 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
001006622 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6$$eCorresponding author$$ufzj
001006622 909CO $$ooai:juser.fz-juelich.de:1006622$$pVDB
001006622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ
001006622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b3$$kFZJ
001006622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001006622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b6$$kFZJ
001006622 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001006622 9141_ $$y2023
001006622 920__ $$lyes
001006622 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001006622 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001006622 980__ $$aconf
001006622 980__ $$aVDB
001006622 980__ $$aI:(DE-Juel1)IAS-1-20090406
001006622 980__ $$aI:(DE-Juel1)PGI-1-20110106
001006622 980__ $$aUNRESTRICTED