001     1006622
005     20240226075500.0
037 _ _ |a FZJ-2023-01755
041 _ _ |a English
100 1 _ |a Aldarawsheh, Amal
|0 P:(DE-Juel1)185991
|b 0
|e Corresponding author
|u fzj
111 2 _ |a DPG-Frühjahrstagungen
|g DPG2022
|c Regensburg
|d 2022-09-04 - 2022-09-09
|w Germany
245 _ _ |a Emergence of zero-field non-synthetic single and catenated antiferromagnetic skyrmions in thin films
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1681970875_1475
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Antiferromagnetic (AFM) skyrmions are envisioned as ideal localized topologicalmagnetic bits in future information technologies. In contrast to ferromagnetic (FM)skyrmions, they are immune to the skyrmion Hall effect [1, 2], might offer potential terahertzdynamics [3] while being insensitive to external magnetic fields and dipolar interactions.Although observed in synthetic AFM structures [4] and as complex meronic textures inintrinsic AFM bulk materials [5, 6], their realization in non-synthetic AFM films, of crucialimportance in racetrack concepts, has been elusive. In this work [7], we unveil their presencein a row-wise AFM Cr film deposited on PdFe bilayer grown on fcc Ir(111) surface. Usingfirst-principles, we demonstrate the emergence of single and strikingly interpenetratingcatenated AFM skyrmions, which can coexist with the rich inhomogeneous exchange field,including that of FM skyrmions, hosted by PdFe. Besides the identification of an idealplatform of materials for intrinsic AFM skyrmions, we anticipate the uncovered knottedsolitons to be promising building blocks in AFM spintronics.[1] Barker and Tretiakov, Physical Review Letters 116, 147203 (2016).[2] Zhang, Zhou and Ezawa, Scientific Reports 6, 1 (2016).[3] Gomonay, Baltz, Brataas, Tserkovnyak, Nature Physics 14, 213 (2018).[4] Legrand et al., Nature Materials 19, 34 (2020).[5] Gao et al., Nature 586, 37 (2020).[6] Jani et al., Nature 590, 74 (2021).[7] Aldarawsheh et al., ArXiv:2202.12090 (2022).
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
700 1 _ |a Fernandes, Imara Lima
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brinker, Sascha
|0 P:(DE-Juel1)168211
|b 2
700 1 _ |a Sallermann, Moritz
|0 P:(DE-Juel1)174583
|b 3
|u fzj
700 1 _ |a MuayadAbusaa5
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
|u fzj
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 6
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1006622
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185991
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21