001     1006629
005     20230929112523.0
024 7 _ |a 10.1021/acs.jpcb.2c08114
|2 doi
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 2128/34364
|2 Handle
024 7 _ |a 37011021
|2 pmid
024 7 _ |a WOS:000967258200001
|2 WOS
037 _ _ |a FZJ-2023-01762
082 _ _ |a 530
100 1 _ |a Rosenbauer, Jakob
|0 P:(DE-Juel1)174346
|b 0
|u fzj
245 _ _ |a Multiscale Modeling of Spheroid Tumors: Effect of Nutrient Availability on Tumor Evolution
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683117503_3821
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent years have revealed a large number of complex mechanisms and interactions that drive the development of malignant tumors. Tumor evolution is a framework that explains tumor development as a process driven by survival of the fittest, with tumor cells of different properties competing for limited available resources. To predict the evolutionary trajectory of a tumor, knowledge of how cellular properties influence the fitness of a subpopulation in the context of the microenvironment is required and is often inaccessible. Computational multiscale-modeling of tissues enables the observation of the full trajectory of each cell within the tumor environment. Here, we model a 3D spheroid tumor with subcellular resolution. The fitness of individual cells and the evolutionary behavior of the tumor are quantified and linked to cellular and environmental parameters. The fitness of cells is solely influenced by their position in the tumor, which in turn is influenced by the two variable parameters of our model: cell–cell adhesion and cell motility. We observe the influence of nutrient independence and static and dynamically changing nutrient availability on the evolutionary trajectories of heterogeneous tumors in a high-resolution computational model. Regardless of nutrient availability, we find a fitness advantage of low-adhesion cells, which are favorable for tumor invasion. We find that the introduction of nutrient-dependent cell division and death accelerates the evolutionary speed. The evolutionary speed can be increased by fluctuations in nutrients. We identify a distinct frequency domain in which the evolutionary speed increases significantly over a tumor with constant nutrient supply. The findings suggest that an unstable supply of nutrients can accelerate tumor evolution and, thus, the transition to malignancy.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Forschergruppe Schug (hkf6_20200501)
|0 G:(DE-Juel1)hkf6_20200501
|c hkf6_20200501
|f Forschergruppe Schug
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Berghoff, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Glazier, James A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.2c08114
|g p. acs.jpcb.2c08114
|0 PERI:(DE-600)2006039-7
|n 16
|p 3607–3615
|t The journal of physical chemistry / B
|v 127
|y 2023
|x 1520-6106
856 4 _ |u https://juser.fz-juelich.de/record/1006629/files/acs.jpcb.2c08114.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006629
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21