| Home > Publications database > Polyelectrolyte Complexes from Oppositely Charged Filamentous Viruses > print |
| 001 | 1006630 | ||
| 005 | 20231027114401.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.langmuir.2c02790 |2 doi |
| 024 | 7 | _ | |a 0743-7463 |2 ISSN |
| 024 | 7 | _ | |a 1520-5827 |2 ISSN |
| 024 | 7 | _ | |a 2128/34350 |2 Handle |
| 024 | 7 | _ | |a 36947868 |2 pmid |
| 024 | 7 | _ | |a WOS:000952045500001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-01763 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Anop, Hanna |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Polyelectrolyte Complexes from Oppositely Charged Filamentous Viruses |
| 260 | _ | _ | |a Washington, DC |c 2023 |b ACS Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1682490974_10605 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Here, we present an explorative study on a new type of polyelectrolyte complex made from chemically modified filamentous fd viruses. The fd virus is a semiflexible rod-shaped bacteriophage with a length of 880 nm and a diameter of 6.6 nm, which has been widely used as a well-defined model system of colloidal rods to investigate phase, flow, and other behavior. Here, chemically modified viruses have been prepared to obtain two types with opposite electrical charges in addition to a steric stabilization layer by poly(ethylene glycol) (PEG) grafting. The complex formation of stoichiometric mixtures of these oppositely charged viruses is studied as a function of virus and salt concentration. Furthermore, static light scattering measurements show a varying, strong increase in scattering intensity in some samples without visual macroscopic complex formation. Finally, the results of the complex formation are rationalized by comparing to model calculations on the pair interaction potential between oppositely charged viruses. |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Buitenhuis, Johan |0 P:(DE-Juel1)130577 |b 1 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acs.langmuir.2c02790 |g Vol. 39, no. 13, p. 4545 - 4556 |0 PERI:(DE-600)2005937-1 |n 13 |p 4545 - 4556 |t Langmuir |v 39 |y 2023 |x 0743-7463 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1006630/files/acs.langmuir.2c02790.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1006630 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130577 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-22 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-22 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-22 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LANGMUIR : 2022 |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-22 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-22 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-22 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|