001006632 001__ 1006632
001006632 005__ 20230929112524.0
001006632 0247_ $$2doi$$a10.1021/acsaelm.3c00112
001006632 0247_ $$2Handle$$a2128/34388
001006632 0247_ $$2pmid$$a37124237
001006632 0247_ $$2WOS$$aWOS:000967269500001
001006632 037__ $$aFZJ-2023-01765
001006632 082__ $$a620
001006632 1001_ $$0P:(DE-Juel1)188576$$aConcepción, Omar$$b0$$eCorresponding author
001006632 245__ $$aIsothermal Heteroepitaxy of Ge 1– x Sn x Structures for Electronic and Photonic Applications
001006632 260__ $$aWashington, DC$$bACS Publications$$c2023
001006632 3367_ $$2DRIVER$$aarticle
001006632 3367_ $$2DataCite$$aOutput Types/Journal article
001006632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683715516_26001
001006632 3367_ $$2BibTeX$$aARTICLE
001006632 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006632 3367_ $$00$$2EndNote$$aJournal Article
001006632 520__ $$aEpitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1–xSnx alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1–xSnx layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1–xSnx layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
001006632 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001006632 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006632 7001_ $$0P:(DE-HGF)0$$aSøgaard, Nicolaj B.$$b1
001006632 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin-Hee$$b2$$ufzj
001006632 7001_ $$0P:(DE-HGF)0$$aYamamoto, Yuji$$b3
001006632 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas T.$$b4$$ufzj
001006632 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b5
001006632 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b6
001006632 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b7
001006632 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
001006632 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b9$$ufzj
001006632 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.3c00112$$gp. acsaelm.3c00112$$n4$$p2268–2275$$tACS applied electronic materials$$v5$$x2637-6113$$y2023
001006632 8564_ $$uhttps://juser.fz-juelich.de/record/1006632/files/acsaelm.3c00112.pdf$$yOpenAccess
001006632 8767_ $$d2023-04-11$$eHybrid-OA$$jPublish and Read
001006632 909CO $$ooai:juser.fz-juelich.de:1006632$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b0$$kFZJ
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b2$$kFZJ
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich$$b4$$kFZJ
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b7$$kFZJ
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
001006632 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b9$$kFZJ
001006632 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001006632 9141_ $$y2023
001006632 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006632 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001006632 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
001006632 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006632 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
001006632 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006632 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ELECTRON MA : 2022$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001006632 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001006632 920__ $$lyes
001006632 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001006632 980__ $$ajournal
001006632 980__ $$aVDB
001006632 980__ $$aUNRESTRICTED
001006632 980__ $$aI:(DE-Juel1)PGI-9-20110106
001006632 980__ $$aAPC
001006632 9801_ $$aAPC
001006632 9801_ $$aFullTexts