001     1006632
005     20230929112524.0
024 7 _ |a 10.1021/acsaelm.3c00112
|2 doi
024 7 _ |a 2128/34388
|2 Handle
024 7 _ |a 37124237
|2 pmid
024 7 _ |a WOS:000967269500001
|2 WOS
037 _ _ |a FZJ-2023-01765
082 _ _ |a 620
100 1 _ |a Concepción, Omar
|0 P:(DE-Juel1)188576
|b 0
|e Corresponding author
245 _ _ |a Isothermal Heteroepitaxy of Ge 1– x Sn x Structures for Electronic and Photonic Applications
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683715516_26001
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1–xSnx alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1–xSnx layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1–xSnx layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Søgaard, Nicolaj B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bae, Jin-Hee
|0 P:(DE-Juel1)177006
|b 2
|u fzj
700 1 _ |a Yamamoto, Yuji
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tiedemann, Andreas T.
|0 P:(DE-Juel1)128639
|b 4
|u fzj
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 7
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 8
|u fzj
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 9
|u fzj
773 _ _ |a 10.1021/acsaelm.3c00112
|g p. acsaelm.3c00112
|0 PERI:(DE-600)2949097-2
|n 4
|p 2268–2275
|t ACS applied electronic materials
|v 5
|y 2023
|x 2637-6113
856 4 _ |u https://juser.fz-juelich.de/record/1006632/files/acsaelm.3c00112.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006632
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ELECTRON MA : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21