001     1006639
005     20230929112524.0
024 7 _ |a 10.1093/micmic/ozad016
|2 doi
024 7 _ |a 1079-8501
|2 ISSN
024 7 _ |a 1431-9276
|2 ISSN
024 7 _ |a 1435-8115
|2 ISSN
024 7 _ |a 2128/34278
|2 Handle
024 7 _ |a WOS:000984270700007
|2 WOS
037 _ _ |a FZJ-2023-01772
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Strauch, Achim
|0 P:(DE-Juel1)177024
|b 0
245 _ _ |a Systematic Errors of Electric Field Measurements in Ferroelectrics by Unit Cell Averaged Momentum Transfers in STEM
260 _ _ |a New York, NY
|c 2023
|b Cambridge University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1691133622_23332
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a When using the unit cell average of first moment data from four-dimensional scanning transmission electron microscopy (4D-STEM) to characterize ferroelectric materials, a variety of sources of systematic errors needs to be taken into account. In particular, these are the magnitude of the acceleration voltage, STEM probe semi-convergence angle, sample thickness, and sample tilt out of zone axis. Simulations show that a systematic error of calculated electric fields using the unit cell averaged momentum transfer originates from violation of point symmetry within the unit cells. Thus, values can easily exceed those of potential polarization-induced electric fields in ferroelectrics. Importantly, this systematic error produces deflection gradients between different domains seemingly representing measured fields. However, it could be shown that for PbZr0.2Ti0.8O3, many adjacent domains exhibit a relative crystallographic mistilt and in-plane rotation. The experimental results show that the method gives qualitative domain contrast. Comparison of the calculated electric field with the systematic error showed that the domain contrast of the unit cell averaged electric fields is mainly caused by dynamical scattering effects and the electric field plays only a minor role, if present at all.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)
|0 G:(DE-HGF)VH-NG-1317
|c VH-NG-1317
|x 1
536 _ _ |a Ptychography 4.0 - Proposal for a pilot project "Information & Data Science" (ZT-I-0025)
|0 G:(DE-HGF)ZT-I-0025
|c ZT-I-0025
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a März, Benjamin
|0 P:(DE-Juel1)180986
|b 1
700 1 _ |a Denneulin, Thibaud
|0 P:(DE-Juel1)172928
|b 2
700 1 _ |a Cattaneo, Mauricio
|0 P:(DE-Juel1)177854
|b 3
|u fzj
700 1 _ |a Rosenauer, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1093/micmic/ozad016
|g Vol. 29, no. 2, p. 499 - 511
|0 PERI:(DE-600)1481716-0
|n 2
|p 499 - 511
|t Microscopy and microanalysis
|v 29
|y 2023
|x 1079-8501
856 4 _ |u https://juser.fz-juelich.de/record/1006639/files/Invoice_E16000869.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1006639/files/Systematic%20errors.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006639
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165314
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21