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a b s t r a c t 

Naturalistic viewing (NV) is currently considered a promising paradigm for studying individual differences in functional brain organization. While whole brain 

functional connectivity (FC) under NV has been relatively well characterized, so far little work has been done on a network level. 

Here, we extend current knowledge by characterizing the influence of NV on FC in fourteen meta-analytically derived brain networks considering three different 

movie stimuli in comparison to resting-state (RS). We show that NV increases identifiability of individuals over RS based on functional connectivity in certain, but 

not all networks. Furthermore, movie stimuli including a narrative appear more distinct from RS. In addition, we assess individual variability in network FC by 

comparing within- and between-subject similarity during NV and RS. We show that NV can evoke individually distinct NFC patterns by increasing inter-subject 

variability while retaining within-subject similarity. Crucially, our results highlight that this effect is not observable across all networks, but rather dependent on the 

network-stimulus combination. Our results confirm that NV can improve the detection of individual differences over RS and underline the importance of selecting 

the appropriate combination of movie and cognitive network for the research question at hand. 
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. Introduction 

Understanding functional brain organization is a major goal of hu-

an neuroscience. Typically, researchers have focused on commonali-

ies between individuals and used group-averages to reveal the shared

eural underpinnings of certain brain functions. In recent years, the in-

erest in individual functional brain architecture has grown. At the same

ime, neuroimaging has shifted from mapping brain functions towards

nvestigating interactions within distributed brain networks by consid-

ring functional brain connectivity. Specifically, functional connectiv-

ty studies yielded insight into the foundation of individual brain or-

anization ( Biswal et al., 1995 ; Greicius et al., 2003 ; Fox et al., 2006 ;

amoiseaux et al., 2006 ). However, it is yet unclear which paradigms

re best suited to study individual differences. 

Most research on FC has been done on connectivity patterns occur-

ing during resting state (RS), where participants lie in the scanner with-

ut any particular task or any external stimulation ( Damoiseaux et al.,

006 ; Amft et al., 2015 ; Langner and Eickhoff, 2013 ; Binder et al., 2009 ;

uhle et al., 2014 ; Shehzad et al., 2009 ; Schaefer et al., 2018 ). In con-

rast to task-based studies, RS is thought to reveal the intrinsic brain

rganization ( Smith et al., 2009 ). In addition, the ease of implementa-
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ion of RS data allows for the relatively quick acquisition of large healthy

nd clinical samples due to low demands on participants. Although the

S paradigm has provided a variety of insights into the organization

f the human brain, it also comes with limitations: In the absence of a

ask, RS is likely influenced by spontaneous thoughts of the participant

 Christoff et al., 2004 ; Gonzalez-Castillo et al., 2021 ). Furthermore, ex-

erimental decisions such as instructing participants to keep their eyes

pen or closed can affect the measurement ( Patriat et al., 2013 ). Finally,

arious studies have shown that individual FC during RS is heavily in-

uenced by state effects ( Geerligs et al., 2015 ). 

To address these limitations, naturalistic viewing (NV) has been

uggested as a promising tool for the study of individual differences

 Finn et al., 2017 ; Finn et al., 2020 ). During NV, participants are in-

tructed to watch a movie clip without any additional task. Therefore,

V reduces the variability induced by spontaneous thought content of

he subject, because all participants are presented with the same stimu-

us ( Hasson et al., 2004 ). By more closely mimicking conditions under

hich the brain naturally operates, NV promises to capture more ecolog-

cally valid neuronal responses. Despite NV increasing the similarity of

C across participants, individual differences still persist. Using “finger-

rinting ” ( Finn et al., 2015 ) or identifiability as a proxy for individual
viour (INM-7), Research Centre Jülich, Jülich 52428, Germany. 
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S  
ifferences, Vanderwal et al., (2007) demonstrated that NV shows bet-

er identification accuracy than RS ( Vanderwal et al., 2017 ). Further-

ore, Finn et al. (2020) showed that the implementation of NV data

utperforms RS in predicting trait-like phenotypes, thus suggesting that

ndividual variability might be enhanced during NV ( Finn and Bandet-

ini, 2020 ). Different attempts have been made to explain why NV might

nhance FC variability. For instance, Geerligs et al. (2015) argued that

he differences in interpretation of a given movie content might promote

ndividual FC variability ( Geerligs et al., 2015 ). Van de Meer and col-

eagues ( der et al., 2020 ) suggested that NV might impose richer brain

tate dynamics and therefore more distinct connectivity profiles, which

n turn might better reflect phenotypes of interest than brain states dur-

ng RS. Naturalistic Viewing paradigms provide further advantages over

onventional RS: By increasing participant engagement, NV reduces fa-

igue and head movement during the measurement ( Finn and Bandet-

ini, 2020 ; Vanderwal et al., 2019 ). In addition, movie-watching can in-

rease scanner tolerability for cohorts which might either struggle with

taying still (e.g. ADHD patients) or completing demanding tasks (sub-

ects with cognitive impairments) ( Eickhoff et al., 2020 ). 

Current literature evinces the potential for naturalistic viewing as

 useful paradigm for studying individual brain architecture. So far,

ost studies primarily focused on whole-brain connectivity reflect-

ng a holistic view on brain functions. However, brain architecture is

ommonly seen as segregated into modular clusters of spatially dis-

inct areas constituting functional networks ( Sporns and Betzel, 2016 ).

hese networks represent specific cognitive domains, such as memory

 Spreng et al., 2009 ), social cognition ( Bzdok et al., 2012 ) and execu-

ive function ( Rottschy et al., 2012 ). Therefore, investigating networks

unctional connectivity (NFC) increases the interpretability of findings

ver whole-brain connectivity. Furthermore, connectivity in different

etworks likely yields distinct patterns of variance in reaction to NV

timuli. For example, a functional network related to the processing of

motions should react differently to a movie scene with strong emotional

ontent, as compared to the motor network. 

The most commonly used method to define functional networks is

o estimate them from FC under resting-state ( Damoiseaux et al., 2006 ;

chaefer et al., 2018 ; Thomas Yeo et al., 2011 ). RS-networks have shown

ood reproducibility and seem to generally converge well with stud-

es on task-evoked networks ( Smith et al., 2009 ; Mennes et al., 2010 ;

osenbach et al., 2007 ). However, there are several other methods for

efining functional networks ( Schaefer et al., 2018 ; Smith et al., 2009 ;

ower et al., 2011 ), one of which are meta-analytically defined networks

 Eickhoff et al., 2012 ). The latter have the advantage of representing the

ost likely core nodes involved in a given cognitive function, because

hey incorporate convergent information from a multitude of studies

 Eickhoff et al., 2020 ). Thus, studying NFC in meta-analytical networks

ight grant robust insights into the effects of naturalistic viewing on

ndividual variability, which has not been studied yet. 

The present study aims to investigate the influence of NV on indi-

idual variability in NFC by use of three different movie stimuli and

S. There is a plethora of NV stimuli available. Depending on the re-

earch question at hand, studies have suggested to use stimuli that

re disease-specific (e.g. a movie evoking suspicion to study paranoia)

 Eickhoff et al., 2020 ; Finn et al., 2018 ), emotionally or socially engag-

ng ( Finn and Bandettini, 2020 ; Saarimäki, 2021 ; Mishra et al., 2022 ;

chaefer et al., 2010 ) or as neutral as possible ( Vanderwal et al., 2015 ).

revious studies on individual variability under NV employed stimuli

hat the researchers deemed to be the most engaging, thus resorting

o movies with high social and emotional content ( Finn and Bandet-

ini, 2020 ; Saarimäki, 2021 ; Mishra et al., 2022 ; Schaefer et al., 2010 ).

e employ stimuli with different levels of social content, ranging from

he neutral movie Inscapes , over the silent movie The Circus, to the most

ocial movie Indiana Jones and the Temple of Doom. Understanding how

ifferent levels of social and emotional content influence individual vari-

bility on a network level might aid researchers in choosing adequate

timuli for future studies. 
t  

2 
We compare several measures of individual variability (e.g. identi-

ability and inter- and intra-subject variability) between the three dif-

erent movie stimuli and RS across three scanning sessions on the ba-

is of various meta-analytical networks covering affective ( Amft et al.,

015 ; Buhle et al., 2014 ; Liu et al., 2011 ; Sabatinelli et al., 2011 ), so-

ial ( Amft et al., 2015 ; Bzdok et al., 2012 ; Caspers et al., 2010 ), execu-

ive ( Langner and Eickhoff, 2013 ; Rottschy et al., 2012 ; Camilleri et al.,

018 ; Cieslik et al., 2015 ), memory ( Binder et al., 2009 ; Spreng et al.,

009 ) and motor ( Witt et al., 2008 ) functions. Furthermore, we validate

ur results in RS-derived networks by Thomas Yeo et al. (2011) , and on

 whole-brain atlas by Shen et al. (2013) . As a first step, we examined

he similarity of connectivity profiles evoked by different movies and

S. Secondly, we assessed the identifiability of subjects based on NFC-

atterns evoked by NV or RS. Subsequently, we investigated to what ex-

ent identifiability is affected by network size. Finally, we compared the

ffect of different movies and RS on inter- and intra-subject variability.

. Material and methods 

.1. Participants 

36 healthy right-handed and ambidextrous adults were scanned at

he centre for Translational MR Research, National University of Singa-

ore. Two subjects were excluded for having incomplete sessions, leav-

ng a final cohort at 34 (19 females, mean age 27 + / - 2.7 years). Ex-

lusion criteria were neurological or psychiatric diagnoses, significant

isual or hearing impairment, alcohol or caffeine consumption 6 h prior

o the scan and self-reporting of bad sleep the night before the scan

ays. All participants underwent three identical testing sessions within

 one-week interval. Subjects gave written, informed consent and were

ompensated for their participation. The study was approved by the in-

titutional review board of the National University of Singapore. 

.2. Data acquisition 

The data was acquired on a Siemens Magnetom PrismaFit 3-Tesla

ith a 20-Channel head coil. Structural images were collected using

n MP-RAGE sequence (TR = 2300 ms, TE = 2,28 ms, TI = 900 ms, flip-

ngle = 8°) and 1 mm voxel size. All RS and NV runs used the same

cho planar imaging sequence (TR = 719 ms, TE = 30 ms, flip-angle = 52°,

lices = 44, FOV = 225 ×225 mm 

2 ) resulting in 2.96 ×2.96 ×3 mm voxel

ize. Data were retrieved from collaborators at the National University

f Singapore, and structured in the form of a DataLad dataset, a re-

earch data management solution providing data versioning, data trans-

ort, and provenance capture Halchenko et al. (2021) . Each of the three

esting sessions per participant, which were conducted within a seven

ay period, comprised three NV runs and two RS scans. The order of

cans was identical on all three days, starting with a structural scan,

ollowed by 5 functional scans in the order of RS 1, Inscapes, Circus,

ndiana Jones and RS 2, with each functional scan lasting for 10 min.

ll movies had been cut to the same length. For RS scans, participants

ere asked to lay as still as possible and think of nothing in particular,

hile keeping their eyes open. Instructions for the NV scans were to

atch the movies while staying as still as possible. For all scans, par-

icipants were asked to not fall asleep during the measurement. The

ovie clips were presented via a mirror that was mounted on the head

oil and the sound was played through headphones. Inscapes is a non-

erbal, non-social series of animated abstract shapes created by Van-

erwal et al. which was looped to match the 10 min duration (original

ength 7 min) ( Vanderwal et al., 2015 ). The Circus (United Artists Digital

tudios, 1928, directed by Charlie Chaplin) is a silent black-and-white

lm which depicts the protagonist being chased by the police and un-

ntentionally causing comic situations during his escape. Indiana Jones

nd the Temple of Doom (Paramount Pictures, 1984, directed by Steven

pielberg) shows the opening scene of the movie during which the pro-

agonist has to fight off several hitmen who are trying to kill him. Foam
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edges were fitted around each subject’s head for comfort and to de-

rease movement. For all subsequent analyses, only the first RS scan

RS1) was used. 

.3. Data preprocessing 

Preprocessing of MRI data was performed using fMRIPrep, version

0.1.1 ( Esteban et al., 2019 ). In brief, the T1-weighted volumes were

orrected for intensity non-uniformity and skull-stripped. The extracted

rain images were then transformed into Montreal Neurological Insti-

ute (MNI) space and motion corrected using Advanced Normalization

ools (ANTS) ( Avants et al., 2009 ). The functional data was motion-

orrected with MCflirt ( Jenkinson et al., 2002 ) and subsequently co-

egistered to the native T1-weighted image using boundary based reg-

stration with six degrees of freedom from Freesurfer ( Greve and Fis-

hl, 2009 ). Subsequently, ICA-AROMA ( Pruim et al., 2015 ) was used on

he MNI-aligned BOLD images to remove motion artifacts and applied

n isotropic Gaussian kernel of 6 mm FWHM (full-width half-maximum)

or spatial smoothing. Global signals were extracted within the CSF, the

M, and the whole-brain masks and regressed from the preprocessed

MRI data for each subject. 

.4. Network functional connectivity 

For each subject, NFC matrices were constructed for each of the 14

eta-analytical networks, comprising nine to 23 nodes (a detailed de-

cription of the networks can be found in the supplements). Isotropic

 mm spheres were created around the local maxima of each meta-

nalytical network node and the mean time series were subsequently

xtracted. Only gray matter voxels were included. In addition, NFC ma-

rices were constructed for the seven RS derived networks created by

homas Yeo et al. (2011) , comprising the Default, Control, Dorsal At-

ention, Salience, Visual, Somatomotor and Limbic networks, and the

hole-brain atlas created by Shen et al. (2013) . Pearson’s correlation

oefficient (PCC) between all node pairs was calculated to generate a n-

imes-n connectivity matrix per subject and condition, where 𝑛 denotes

he number of nodes of the respective network. 

.5. Representational dissimilarity matrix (RDM) analysis 

To investigate how patterns of inter-individual differences in NFC

ary across conditions (RS and three different NV conditions), we ap-

lied a RDM analysis. The present analysis closely followed the methods

escribed by Kriegeskorte (2008) . The procedure can be summarized in

hree steps. First, the correlation between the FC patterns of every possi-

le pair of subjects is calculated for each condition and network. Second,

o generate a measure of dissimilarity, the correlation distance (1-r) is

omputed. Third, the dissimilarity values for all subject pairs are assem-

led into an RDM (as a subjects ∗ subjects size matrix) that serves as the

ignature of the given condition. 

To visually compare RDMs, we employed Uniform Manifold Approx-

mation and Projection (UMAP) ( McInnes et al., 2018 ), a technique for

imensionality reduction and visualization. Instead of preserving large-

cale structures, UMAP seeks to preserve local neighborhood distances.

o this end, a pre-set number of nearest neighbors (NN) are specified

nd the distances to these neighbors is represented as a weighted graph,

ith the NN being assigned with higher weights. UMAP then finds a low-

imensional representation of the data that best preserves these neigh-

orhoods. The NN parameter controls whether UMAP focuses on the

ocal or global structure of the data. Large values force UMAP to con-

ider a larger number of neighbors and therefore focus on the broader

tructure of the data. In contrast, low values of NN force UMAP to focus

n the local structure of the data. We here applied UMAP to the previ-

usly described RDMs. To account for the small number of data points

fifteen RDMs per network) the NN parameter was set to two. Consider-

ng more than 4 NN led to a more global clustering of RDMs that partly
3 
bscured differences between conditions. By grouping closely related

DMs together, UMAP allowed us to visualize which conditions evoked

imilar responses. Of note, distance metrics in UMAP are non-linear and

ot necessarily the same for each dimensionality reduction. Therefore,

he results are suited to compare the similarity of condition evoked re-

ponses within, but not across networks. An analysis of the RDMs on a

hole-brain level is reported in the supplementary material (Fig. S1). 

.6. Assessment of identifiability 

Assessment of identifiability was closely based on the methods de-

cribed by previous papers ( Finn et al., 2015 ; Vanderwal et al., 2017 ).

he FC matrices belonging to the same session and condition were

rouped, resulting in 12 databases (three sessions times the four con-

itions). For every combination of two databases, Pearson’s correlation

etween the FC matrix of one subject from the first database and every

ther FC matrix from the second database was calculated. The two FC

atrices with the highest correlation were considered to be from the

ame subject. Identification accuracy was defined as the frequency of

orrectly identified subjects divided by the total number of subjects. Af-

erwards, the accuracies were averaged across session pairs to quantify

he identifiability per condition and network. An analysis of identifia-

ility on a whole-brain level is reported in the supplementary material

Table S1). 

.7. Influence of network size 

To ensure that the differences in identification accuracy between net-

orks were not just reflections of network size, we systematically com-

ared identifiability in artificially created networks, constituting up to

0 nodes. Artificial networks were created by randomly choosing coor-

inates from the MNI152 gray matter mask. Around each coordinate,

n isotropic sphere was created, which was matched to the node size

f the meta-analytical networks (5 mm). The mean Euclidean distance

etween nodes from the meta-analytically defined networks was calcu-

ated (14.62 mm) and set as the minimal distance between nodes for the

rtificial networks. Thereby, the randomly chosen nodes were prevented

rom overlapping whilst preserving some degree of spatial comparability

etween artificial and meta-analytically defined networks. This process

as repeated 100 times for each network size, creating a new random

onfiguration of nodes during each repetition. Subsequently, identifica-

ion accuracies for all networks and the different conditions were cal-

ulated to evaluate (1) how network size influences identification accu-

acy, (2) how identifiability between the different conditions behaves in

rtificial networks and (3) how the meta-analytically defined networks

ompare to the artificial networks. 

.8. Within- and between subject correlation 

Within-subject correlations were calculated as Pearson’s correlation

etween the FC matrices of the same subject across session pairs (e.g.

es-1 to Ses-2, Ses-1 to Ses-3) and then averaged. This process was per-

ormed for each of the four conditions (RS and the three movie stimuli)

eparately. For each network or whole-brain atlas, a one-way ANOVA

as computed with condition (RS, Inscapes, Circus, Indiana Jones ) as

ithin-subject factor to evaluate the effect of condition on within-

ubject correlations within the specific networks. Subsequently, Bonfer-

oni correction was applied to account for Type 1 error and Tukey’s HSD

est was performed to reveal which of the conditions significantly dif-

ered. The between-subject correlations were defined as the mean PCC

etween the FC matrix of one subject and every other subject’s FC ma-

rix from the same session and condition. For each network, a one-way

NOVA was computed with condition (RS, movie1, movie2, movie3) as

etween-subject factor to evaluate the effect of condition on between-

ubject correlations within the specific networks. Subsequently, Bonfer-

oni correction was applied to account for Type 1 error and Tukey’s
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SD test was performed to reveal which of the conditions significantly

iffered. It is important to note that the between-subject comparisons

n this study are based on correlations between static NFC of subjects,

n contrast to an Inter-subject Correlation (ISC) approach that corre-

ates the fMRI time series of subjects and is often used to analyze NV

 Halchenko et al., 2021 ). As such, our results should not be interpreted

s a measure of synchrony across subjects, but rather as their similar-

ty in FC. The analysis of within- and between-subject correlations on a

hole-brain level can be found in the supplementary material (Fig. S2).

. Results 

.1. Similarity of different movies and RS connectivity profiles in 

eta-analytic networks 

We investigated the similarity of different conditions by embedding

he respective RDMs into a low dimensional space (UMAP).The UMAP

epresentation showed that RS was embedded separately from all NV

onditions in AM, CogAC, VigAtt and WM, and separately from most

V conditions in MNS and Motor networks. In eMDN, EmoSF, ER, eSAD,

ew and ToM networks, RS shows overlaps with the movie Inscapes . On

he other hand, the movies Circus and Indiana Jones tended to cluster

ogether in (AM, CogAC, eMDN, Empathy, ER, eSAD, MNS, Motor, Rew).

e did not observe any evidence for a systematic session-effect, as RDMs

f the same session (session 3) were only embedded together in the

otor network ( Fig. 1 ). 

.2. Similarity of different movies and RS connectivity profiles in RS 

erived networks 

The UMAP representation of the different conditions in RS derived

etworks showed that RS was embedded separately from all NV condi-

ions in the Control network and separately from most NV conditions in

imbic, SomatoMotor and Visual networks. In all networks except for

he Control network, RS shows overlap with the movie Inscapes. Indiana

ones and Circus overlap in all networks ( Fig. 2 ). 

.3. Identification accuracies in meta-analytic networks 

Identifiability of subjects was assessed based on NFC-patterns evoked

y NV or RS. Overall, individual FC matrices could be matched across

essions with moderate to high accuracy with identification accuracies

anging from 52% to 100%. The motor network represented an ex-

eption with low identification accuracies across conditions (27.5%–

0.4%). In eleven out of 14 networks, identifiability was highest in

ither the Circus or Indiana Jones NV conditions. Among the natural-

stic stimuli, Indiana Jones led to the highest identification accuracies in

ight of the networks (SM, CogAc, EmoSF, eMDN, ER, VigAtt, MNS, and

SAD). The top three highest accuracies were achieved using NV, with

C matrices using the Indiana Jones movie reaching the highest accuracy

98%) in the SM network. Generally, networks with more nodes tended

o achieve higher accuracies. 

.4. Identification accuracies in RS derived networks 

In addition, identifiability of subjects was assessed based on NFC

n RS derived networks. Generally, individual FC matrices could be

atched with moderate to high accuracy with accuracies ranging from

3% to 91%. The limbic network represented an exception with low

dentification accuracies across conditions (9.3%–14.22%). In the con-

rol, dorsal attention and visual networks, Indiana Jones led to the high-

st identification accuracy. In the default, salience and somatomotor

etworks, RS led to the highest identifiability. The highest accuracy

as achieved by RS in the default network (91%). Overall, accuracies

n the RS derived networks were lower than in the majority of meta-

nalytically derived networks. 
4 
.5. Identification accuracies for different network sizes 

To evaluate the effect of network size on identification accuracy,

e computed identifiability in random networks with sizes between 3

nd 50 nodes. We then compared these to the accuracies achieved in

eta-analytic networks, as the meta-analytic networks showed higher

ccuracy then the RS derived networks. Identifiability in artificial net-

orks showed how network size influences identification accuracy for

ll modalities ( Fig. 2 ). A continuous increase of identification accuracy

an be seen for all conditions up until a network size of 20 nodes, where

he increase rate stabilizes. All networks, apart from the Motor network,

chieved higher accuracies than the artificially created networks of the

ame size, regardless of condition. Furthermore, identification accura-

ies for the Indiana Jones movie exceeded those of the other three con-

itions, regardless of network size ( Fig. 3 ). 

.6. Within- and between-subject correlations in meta-analytic networks 

We calculated within-subject correlations, as a measure of how simi-

ar subjects are to themselves across sessions, and between-subject corre-

ations, as a measure of similarity between subjects. The average within-

ubject correlations for RS and NV ranged between 0.5 and 0.8, with

he exception of the Motor network (0.1–0.6), indicating a high level

f similarity of connectivity patterns across sessions. For multiple net-

orks, most prominently the MNS network, within-subject correlations

trengthened from RS < Inscapes < Circus < Indiana Jones . 

RS state differed from one or more movie conditions in various

etworks: RS showed significantly higher within-subjects correlations

ompared to Indiana Jones (AM) and Circus (AM). In contrast, some

ovies showed significantly higher within-subject correlations than RS

n emoSF ( Indiana Jones ), and MNS ( Indiana Jones and Circus ). 

In several networks certain movies differed from one another, with

ignificantly higher correlations in Indiana Jones compared to Circus in

moSF; and higher correlations in Indiana Jones compared to Inscapes in

mpathy and MNS networks. Circus never showed significantly higher

orrelations compared to any other movie in any network. 

RS and the movie Inscapes exhibited similar correlations across net-

orks. Overall, the movie Indiana Jones tended to stand out in that it

as the only condition that showed significantly higher within-subject

orrelations than RS in several networks (EmoSF and MNS). On the con-

rary, the movie Circus often led to decreased within-subject correlations

n comparison to the other conditions. 

Between-subject correlations were generally lower than those pre-

iously observed on a whole-brain level, ranging from below 0.1 to

.75. In several networks, the opposite pattern of what was observed

or within-subject correlations can be seen, such that increasingly com-

lex stimuli weaken between-subject correlations (AM, ER, eSAD and

M). In other networks, the three movies made connectivity across sub-

ects more similar, increasing between-subject correlations in compari-

on with RS (CogAc, EmoSF, Rew and VigAtt). 

Comparing within- and between-subject correlations, it is evident

hat increased within-subject correlations did not automatically lead to

ecreased between-subject correlations (and vice versa), such that a sub-

ect’s scan can be highly individual (or reliable) and still share substan-

ial overlap with others. 

RS differed from one or more movie conditions in various networks:

S showed significantly higher between-subjects correlations compared

o Indiana Jones (AM, eSAD, SM, ToM), Inscapes (ToM) and Circus (AM,

otor, SM, ToM). In contrast, other networks showed significantly

igher between-subject correlations than RS for Indiana Jones (CogAC,

MDN, EmoSF, Rew, VigAtt,WM), Inscapes (CogAC, emoSF, Rew, VigAtt,

M,) and Circus (CogAC, EmoSF, MNS, Rew, VigAtt). 

In several networks certain movies differed from one another, with

ignificantly higher between-subject correlations of Inscapes compared

o Circus in the AM, CogAC, EmoSF, eSAD, Motor, SM, and ToM; and

igher correlations in Inscapes compared to Indiana Jones in AM, EmoSF,
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Fig. 1. UMAP representation of the RDMs of the different conditions in each meta-analytic network. 
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Fig. 2. UMAP representation of the RDMs of the different conditions in each RS 

derived network. 
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R, eSAD and SM; and higher correlations in Indiana Jones compared

o Circus in eDMN, Motor and ToM; and higher correlations in Circus

ompared to Indiana Jones in AM and SM networks ( Figs. 4 and 5 ). 

.7. Within- and between-subject correlations in RS derived networks 

We calculated within- and between-subject correlations for the RS

erived networks. The average within-subject correlation for RS and NV

anged between 0.6 and 0.9, with the exception of the limbic network

0.1–0.8), indicating a high level of similarity of connectivity across

essions. The within-subject correlations in the RS derived networks

ere generally higher than the within-subject correlations in the meta-

nalytic networks. RS showed significantly higher within-subject cor-

elations than Circus in the default network.The movie Indiana Jones
6 
howed significantly higher within-subject correlations than Circus in

he Default network. 

The average between-subject correlations ranged between 0.1 and

.9 and were generally higher than the between-subject correlations in

he meta-analytic networks. In five out of seven networks, at least one

f the movie conditions led to higher between-subject correlations than

or RS. 

RS differed from one or movie conditions in various networks. RS

howed significantly higher between-subject correlations compared to

ircus (Cont) and Indiana Jones (Default). In contrast, other networks

howed higher between-subject correlations than RS for Inscapes (Dor-

Att), Circus (SalVentAtt, SomMot, Vis) and Indiana Jones (SalVentAtt,

omMot, Vis). 

In several networks, certain movies differed from each other with

ignificantly higher between-subject correlations for Inscapes than Cir-

us in the Default and DorsAtt network; and higher correlations for In-

capes compared to Indiana Jones in the Default network; and higher

orrelations for Circus than Inscapes in the SalVentAtt, SomMot and Vis

etworks; and higher correlations for Circus than for Indiana Jones in the

is network; and higher correlations for Indiana Jones than for Inscapes

n the SalVentAtt and SomMot networks Figs. 6 and 7 ). 

. Discussion 

In the current study we examined and compared the NFC evoked

y different NV stimuli and RS with respect to similarity of connectiv-

ty profiles, individual identifiability, as well as within- and between-

ubject correlations. Our results showed that NV stimuli evoke connec-

ivity profiles that are distinct from RS across meta-analytically defined

nd RS derived networks. NV stimuli, especially Indiana Jones , enhance

he identifiability of individual subjects in the vast majority (10 of 14)

f meta-analytic networks. Crucially, our results show that NFC analy-

is might reveal differences that are obscured on a whole brain basis.

astly, our results emphasize that the similarity of individuals to them-

elves and to others is highly dependent on the combination of condition

nd network. 

.1. Comparison of connectivity profiles during NV and RS 

In this study, we compared NFC evoked by three different NV stimuli

nd RS. A low-dimensional embedding of NFC similarity across subjects

n meta-analytic networks showed that FC patterns during Inscapes are

ostly similar to those during RS, while Circus and Indiana Jones exhib-

ted distinct connectivity profiles across networks ( Fig. 1 ). The relative

imilarity of connectivity patterns during Inscapes and RS has been re-

orted before: For instance, based on Pearson’s correlations between FC

atrices, Inscapes was shown to be more similar to RS than to another

ovie condition ( Vanderwal et al., 2017 ). These authors argued that

ue to the abstract nature of the movie, participants might not engage

n temporally synchronized cognitive processes, which is similar to RS

 Vanderwal et al., 2015 ). Furthermore, our embedding shows little sim-

larity of NFC during Inscapes and either Circus or Indiana Jones in the

ajority of networks. This is in line with the previous argument, as both

ircus and Indiana Jones contain a narrative that is likely to increase

imilarity across subjects, as has been shown for verbal narratives (e.g.

motional speeches ( Nummenmaa et al., 2014 ; Schmälzle et al., 2015 )).

ccordingly, connectivity profiles during Circus and Indiana Jones over-

ap in the vast majority of networks. For the whole brain, similarity

cross conditions seemed more widespread and all conditions clustered

ogether at least once (Fig. S1). 

.2. Identifiability 

To assess the stability of individual patterns on the network level,

e calculated the identifiability of NFC matrices across the three movies

nd RS ( Table 1 ). Considering that NV has been shown to increase the
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Fig. 3. Identification accuracies in artificial networks. The figure depicts the network size as the number of nodes (x-axis) against averaged identification accuracy 

(y-axis) for each of the four conditions (RS = blue; Inscapes = orange; Circus = green; Indiana Jones = red). Black dots denote the mean identification accuracy 

of meta-analytically defined networks, averaged across conditions and placed at their respective node count. (AM = Autobiographical Memory, CogAC = Cognitive 

Attention Control,eMDN = extended Multiple Demand Network, EmoSF = Emotional Scene and Face Processing, ER = Emotion Regulation, eSAD = Extended Social- 

affective Default, MNS = Mirror Neuron System, Rew = Reward, SM = Semantic Memory, ToM = Theory of Mind, VigAtt = Vigilant Attention, WM = Working 

memory,. 

Table 1 

Identification accuracies per network and modality, averaged across sessions. Networks are in or- 

der of highest average accuracy. The highest identification accuracy in each network is denoted 

in bold. (AM = Autobiographical Memory, CogAC = Cognitive Attention Control,eMDN = extended 

Multiple Demand Network, EmoSF = Emotional Scene and Face Processing, ER = Emotion Regu- 

lation, eSAD = Extended Social-affective Default, MNS = Mirror Neuron System, Rew = Reward, 

SM = Semantic Memory, ToM = Theory of Mind, VigAtt = Vigilant Attention, WM = Working mem- 

ory, Shen = Shen atlas). 

Network RS Inscapes Circus Indiana Jones Node Number 

Semantic Memory 95.1% 95.1% 97.1% 98.0% 23 

Cognitive Attention Control 93.6% 90.2% 94.1% 96.6% 19 

Theory of Mind 93.1% 90.7% 95.1% 94.6% 15 

Autobiographical Memory 94.1% 92.2% 93.1% 92.6% 22 

Working Memory 96.1% 93.6% 88.7% 92.2% 23 

Reward 96.1% 90.7% 86.3% 90.2% 23 

Emotional Scene & Face Perception 88.7% 85.8% 86.8% 94.6% 24 

Multiple Demand Network 85.8% 85.8% 79.9% 86.8% 17 

Empathy 86.3% 81.4% 79.9% 81.9% 18 

Emotion Regulation 81.9% 80.9% 72.1% 83.3% 14 

Vigilant Attention 80.4% 74.0% 73.5% 80.9% 16 

Mirror Neuron System 77.0% 76.5% 71.1% 77.0% 11 

Socio Affective Default 59.8% 52.9% 54.4% 64.7% 12 

Motor 27.9% 30.4% 30.4% 27.5% 9 
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eliability of individual FC patterns ( Geerligs et al., 2015 ; Hasson et al.,

010 ), we hypothesized that identifiability should be higher for movies

s compared to RS. However, present results suggest that this is not the

ase for movies in general, but rather identification accuracy appears to

ighly depend on the specific movie as well as on the chosen network.

pecifically, Indiana jones achieved the highest accuracy in 8 of 14 net-

orks (SM, CogAC, EMOSF, eMDN, ER, VigAtt, MNS, eSAD), whereas
7 
nscapes and Circus produced highest accuracies in two networks ( In-

capes : Motor; Circus : ToM, Motor). RS, on the other hand, achieved the

ighest accuracies in 5 networks (AM, WM, ReW, Empathy, MNS). No-

ably, the connectivity profiles within the Motor network yielded low

dentification accuracies in comparison with the other networks across

ll stimuli. Lower-level cognitive structures such as the motor network

how low variance between participants ( Croxson et al., 2018 ). Further-
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Fig. 4. Within-subject correlations for the meta-analytically defined networks. Correlations across all session pairings are depicted. (RS = Resting State, I = Inscapes, 

C = Circus, IJ = Indiana Jones). 
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ore, as the motor network was created solely based on fingertapping

asks, it seems reasonable to assume that activation was low in this net-

ork. Therefore, connectivity patterns are expected to be rather similar

cross participants. 

Indiana Jones was the stimulus that achieved the highest identifica-

ion accuracy in the majority of networks. Previous studies have argued

hat the major driving factor for improvement of individual identifi-

bility is the social content of a stimulus ( Nummenmaa et al., 2014 ;

chmälzle et al., 2015 ; Dmochowski et al., 2014 )., which in the present

tudy was most pronounced for Indiana Jones . In comparison, neither

ircus nor Inscapes reach the level of social content depicted in Indiana

ones. Circus’ complete lack of speech might have taken away from the

ocial component whereas Inscapes does not depict any human interac-

ion at all. 

.3. Identification accuracies for different network sizes 

Since we observed an increase of identification accuracy with net-

ork size such that bigger networks tended to show higher accuracies,

e investigated the influence of network size on identifiability in arti-

cially created networks ( Fig. 3 ). The results show the same tendency

hat was observed in the meta-analytically defined networks, such that

dentification accuracy was highest for Indiana Jones , followed by RS,

nscapes and Circus . Confirming our observation, identification accuracy
8 
n artificial networks increased with network size, regardless of condi-

ion. Notably, all meta-analytical networks, except the motor network,

utperformed artificial networks of the same size, supporting their bi-

logical validity. Following our previous line of argument, the motor

etwork might not be suitable for subject identification based on FC,

hich might explain the underperformance compared to artificial net-

orks. 

.4. Within- and between-subject correlations in meta-analytic networks 

To better understand the differences in identifiability across stimuli

nd networks, we investigated within- and between-subject correlations

 Figs. 4 and 5 ). Our results showed that in the majority of networks,

ithin- and between-subject correlations were significantly altered dur-

ng NV in comparison to RS. It is generally assumed that NV should in-

rease between-subject similarity, given that all subjects are presented

ith the same stimuli, in comparison to no stimuli at all during RS

 Hasson et al., 2004 ; Hasson et al., 2010 ; Kauppi, 2010 ). On the other

and, it is unclear whether NV can evoke unique and reliable patterns

cross sessions, as measured by within-subject correlations. Vanderwal

nd colleagues investigated FC variability in NV and RS and showed

hat naturalistic paradigms increased within- and between-subject cor-

elations on a whole brain level ( Vanderwal et al., 2017 ). However, our

esults showed no significant differences for either within- or between-
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Fig. 5. Between-subject correlations for the meta-analytically defined networks. Correlations for all sessions are depicted. (RS = Resting State, I = Inscapes, C = Circus, 

IJ = Indiana Jones). 

Fig. 6. Within-subject correlations for the RS derived networks. Correlations across all session pairings are depicted. 
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Fig. 7. Between-subject correlations for the RS derived networks. Correlations for all sessions are depicted. 
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ubject correlations on a whole-brain level (supplementary Fig. S1 and

2). On the other hand, our analysis revealed varying effects on a net-

ork basis. Increased within-subject correlations were mainly observed

n meta-analytic networks that are essential for perception and pro-

essing of action, behavior and emotions, namely EmoSF, Empathy and

NS. In other networks, NV resulted in more similar patterns between

ubjects (CogAC, eMDN, Rew, VigAtt and WM). Notably, multiple net-

orks showed decreased within- and between-subject correlations dur-

ng NV (AM, ER, eSAD, SM, ToM). We will discuss these three groups of

etworks subsequently. 

.4.1. Networks with higher within-subject correlations in movies 

NV showed significantly higher within-subject correlations in net-

orks that are essential for perception and processing of action, behav-

or and emotions (EmoSF and MNS). In a recent publication by Finn and

andettini (2020) it was shown that NV outperformed RS in FC-based

rediction of behavioral scores. In their study, movies with strong so-

ial content led to the more accurate predictions, regardless of whether

he predicted score was social or cognitive. The authors hypothesize

hat social movies are not only more engaging, but also most likely

o evoke divergent interpretations and reactions across participants. In

greement with this assumption, several studies have shown that social

ovies induce different neural responses across subjects ( Finn et al.,

018 ; Rikandi et al., 2017 ; Salmi et al., 2020 ) and that shared inter-

retation of a narrative or movie is associated with similarity in neural

esponses ( Nguyen et al., 2019 ; Gruskin et al., 2020 ). Assuming that the

ocial aspect of a movie stimulus induces stable individual connectivity

atterns, it is reasonable to expect that this effect is more pronounced

n networks that deal with the processing of social interactions. 

In the EmoSF network for example, which deals with the visual and

motional processing of faces or scenes ( Sabatinelli et al., 2011 ), all

hree movie stimuli led to higher within-subject correlations compared

o RS. Notably, the movie Indiana Jones , during which the emotional

rocessing of faces is a key aspect, shows highest within-subject corre-

ations. Here, differences in the emotional assessment of the particular

aces and scenes might have been the driving factor that evoked stable

ndividual connectivity patterns during Indiana Jones . 

In the MNS network, which is involved in the understanding of ac-

ions and their underlying intentions as well as the imitation of ob-

erved behavior, we observed an increase of individuality with increas-

ngly complex stimuli ( Caspers et al., 2010 ). Especially the two stimuli

ircus and Indiana Jones , during which action and behavior of differ-

nt characters are depicted, should engage the MNS network which in

urn might have led to the increased within-subject correlations. The
10 
etween-subject correlations were significantly stronger for Circus than

or RS , but not different between the remaining conditions. Presumably,

he movie Circus serves as the optimal stimulus for action observation

ince it shows moving characters, but (unlike Indiana Jones ) does not

nclude competing stimuli like speech. 

Another network that showed similar patterns, although not reach-

ng significance is the Empathy network, which deals with the emo-

ional cognition of moral behavior ( Bzdok et al., 2012 ). The within-

ubject correlations were increased during the movies Circus and Indi-

na Jones . During both movies, characters show varying emotions in re-

ponse to different situations, which might have been experienced dif-

erently across subjects. Inscapes on the other hand performed similar

o RS, likely because the depicted abstract shapes failed to engage the

etwork. 

.4.2. Networks with higher between-subject correlations in movies 

NV showed significantly higher between-subject correlations in net-

orks that are associated with executive functions and/or stimulus eval-

ation (CogAC, eMDN, EmoSF, MNS, Rew, VigAtt and WM). Here, NV

ncreased the similarity of FC across participants (i.e. higher-between

ubject correlation), but did not increase within-subject correlations.

everal other studies have found NV to increase the similarity between

ubjects ( Finn et al., 2020 ; Hasson et al., 2004 ; Vanderwal et al., 2017 ;

ang et al., 2017 ), which is likely caused by exposure to the same stim-

lus. Although these studies mostly agree that individual differences

an exist on top of the shared response on a whole-brain level, they ac-

nowledge two possible scenarios: On the one hand, the stimulus evoked

imilarity across subjects might enable better observation of individual

ifferences ( Vanderwal et al., 2017 ; Finn and Bandettini, 2020 ). On the

ther hand, strongly increased similarity across subjects’ neuronal re-

ponse might blur individual features ( Finn et al., 2017 ). The same as-

umptions hold true from a network perspective, such that networks

ubjected to the same stimulus can either exhibit deviating patterns on

op of the shared response, or highly similar patterns which conceal in-

ividual differences, depending on the specific network function. 

Considering the main function of each respective network, none of

he networks should be particularly engaged during RS or during any

f the movies. The CogAC network is essential for the suppression of a

redominant but inadequate response in favor of the contextually ap-

ropriate response ( Cieslik et al., 2015 ). The eMDN consists of core re-

ions that are active during most processes which involve executive or

igher cognitive functions and a set of more task-specific regions ex-

ending these core regions ( Camilleri et al., 2018 ). The Rew network

s essential for reward-related decision making ( Liu et al., 2011 ). The
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Table 2 

Identification accuracies per network and modality, averaged across sessions. Net- 

works are in order of highest average accuracy. The highest identification accuracy 

in each network is denoted in bold. 

Network RS Inscapes Circus Indiana Jones Node Number 

Default 91.18% 85.78% 87.75% 90.69% 24 

Control 86.76% 87.75% 79.90% 89.71% 13 

Dorsal Attention 75.49% 73.04% 66.18% 75.98% 15 

Salience 74.51% 66.67% 56.37% 73.04% 12 

Visual 68.63% 58.82% 57.84% 73.04% 17 

Somatomotor 62.75% 60.29% 43.14% 57.84% 14 

Limbic 14.22% 14.22% 9.31% 12.25% 5 
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g  
igAtt network is involved in vigilant attention, i.e. the continued fo-

us on intellectually un-challenging tasks ( Langner and Eickhoff, 2013 ).

he WM network is fundamental for the storage and manipulation of

hort-term memory ( Rottschy et al., 2012 ). Since individual differences

re likely only enhanced in networks that are engaged during a certain

ondition, we assume that NV did not evoke stable individual connec-

ivity patterns, as the processing of movies may not rely on the core net-

ork function. Therefore, subjects are less unique and more similar to

hemselves, increasing between-subject correlations especially in com-

arison with unconstrained RS where more heterogeneous responses are

xpected. 

.4.3. Networks with higher between- or within-subject correlations in RS 

The vast majority of previous studies reported increased within- and

etween-subject correlations for NV in comparison with RS ( Finn et al.,

020 ; Hasson et al., 2004 ; Vanderwal et al., 2017 ; Wang et al., 2017 ;

astase et al., 2019 ). However, all of these studies employed analy-

es of whole brain connectivity, disregarding effects in single networks.

hile previous result patterns hold true in some networks, we also show

hat NV decreases within- and between-subject correlations in other net-

orks (AM, ER, eSAD, SM and ToM). 

The majority of these networks at least partially overlap with the

efault mode network, which is tied to intrinsically oriented functions,

ather than the processing of external stimuli ( Hasson et al., 2004 ;

olland et al., 2007 ). Therefore, it seems plausible that NV does not in-

rease within- or between-subject correlations in these networks which

re likely not engaged during movie watching. The AM network was the

nly network in which within-subject correlations for RS exceeded In-

iana Jones . This network comprises brain regions engaged in processes

oncerning scene-construction and self-projection, or the ability to men-

ally project oneself from the present moment into another time, place,

r perspective. Consequently we would expect the AM network to be

ore strongly activated during RS, when the mind is not occupied by

he content of a movie. Our data indeed shows that participants during

S showed higher within-subject correlations than during the two narra-

ive movie clips Circus and Indiana Jones , but not significantly different

rom the purely abstract animation Inscapes . Therefore, we conclude that

n absence of a storyline, subjects divert to imagined situations instead

f the external stimuli, thus engaging the AM network which leads to

igher within-subject correlations for RS than for the narrative movies.

e assume that the movie Inscapes is inbetween a narrative and the

omplete absence of a stimuli, thus it may fail to engage participants

ver a longer period of time, therefore letting the participant zone out

ventually. In addition, RS and Inscapes also increased between-subject

orrelations in comparison to both narrative movies. Likely, increased

etween-subject correlations are driven by the joint activation of the

M network during RS and Inscapes . On the other hand, Circus and In-

iana Jones likely engage the network to a lesser extent, thereby falling

hort of evoking coordinated activity which in turn reduces similarity

etween subjects. 

The eSAD network was defined to comprise those brain regions that

re part of the default mode network, but at the same time also involved
11 
n social or affective processing ( Amft et al., 2015 ). Thus, the network

s engaged in socio-affective processing including emotional processes,

ognition, reward, introception, memory and theory of mind functions.

lthough not exclusively a “task-negative ” network, the eSAD network

s highly overlapping with the default mode network and generally pre-

umed to be more active when participants can let their thoughts run

ree ( Amft et al., 2015 ). RS showed higher within-subject correlations

han Circus as well as higher between-subject correlations than Indiana

ones . In addition, Inscapes , which is arguably closer to RS than the other

ovies, also showed higher between-subject correlations as compared

o Circus and Indiana Jones . Due to the default mode aspects of the eSAD

etwork, it is perceivable that this network is more strongly engaged

uring RS and Inscapes . Thus, participants are more likely to express

ifferent connectivity patterns as compared to NV where the network

s mostly unengaged. The movies Circus and Indiana Jones on the other

and might result in a less pronounced engagement of the network, thus

ailing to evoke similar patterns across participants. 

The SM network is involved in retrieving semantic knowledge and

s highly overlapping with the default mode network ( Binder et al.,

009 ). The authors argue that task-unrelated thoughts are inherently

emantic, because they require the manipulation of stored knowl-

dge ( Binder et al., 1999 ). Furthermore, semantic processing was re-

iably shown to be suppressed during demanding perceptual tasks

 Binder et al., 2009 ), which is in accordance with our result pattern,

howing increasingly complex stimuli to decrease within- and between-

ubject similarity (RS > Inscapes > Circus > Indiana Jones ). We thus sug-

est that increasing complexity of the movie stimuli suppresses semantic

rocessing and therefore leads to less engagement of the SM network.

resumably, due to a less pronounced engagement of the SM network

uring that Circus and Indiana Jones , participants show low between-

ubject correlations as well as low within-subject correlations. 

The ToM network is fundamental for the understanding and con-

emplation of the behavior and intentions of others ( Bzdok et al., 2012 ).

ithin- and between-subject correlations in the ToM network were gen-

rally higher during RS than during the NV conditions. We assume that

ovies evoke different interpretations of the intentions of the depicted

haracters and thus may have led to diverging connectivity profiles, in

urn increasing differences between subjects. On the other hand, these

ifferences seem to be unstable across sessions, thus decreasing within-

ubject correlations during NV. 

.5. Comparison with RS-derived networks 

Identification accuracies in RS-derived networks confirm the as-

umption that identifiability is dependent on the network-stimulus com-

ination ( Table 2 ). Highest identification accuracy for RS was achieved

n the Default, Salience and SomatoMotor networks, whereas highest ac-

uracy for Indiana Jones was found in the Control, Dorsal Attention and

isual networks. For RS highest overall accuracy (91%) was achieved in

he Default network, which is prominently active during RS ( Long et al.,

008 ). However, the accuracies achieved in RS-derived networks were

enerally lower than those achieved in meta-analytic networks. Out of



J.-P. Kröll, P. Friedrich, X. Li et al. NeuroImage 273 (2023) 120083 

t  

b

 

a  

N  

I  

w  

t  

i

 

c  

i  

R  

d  

s  

i  

a  

b  

c  

O  

R  

o  

i  

s  

c

4

 

i  

s  

t  

s  

a  

t  

o  

f  

o  

s  

c  

H  

i  

a  

v  

d  

s  

F  

i  

t  

N  

s  

p  

K  

a  

h  

(  

i  

b  

s  

t  

s  

l  

u  

i  

r  

e  

o  

t  

i  

t

5

 

v  

l  

t  

w  

o  

o  

t  

n

D

C

 

a  

v  

K  

i  

&  

W  

i  

a  

S  

e

D

 

r  

b  

u  

D  

p  

o

 

c

A

 

R  

(  

W  

o  

M  

M  

F

S

 

t

R

A  

 

he 14 meta-analytic networks, eight yielded higher accuracies than the

est performing RS derived network (Default). 

In accordance with our results on meta-analytic networks, within-

nd between-subject correlations were also significantly altered during

V, in comparison to RS, in the RS-derived networks ( Figs. 6 and 7 ).

n the Control, Dorsal Attention, Salience, SomatoMotor and Visual net-

orks NV resulted in more similar patterns between subjects. Only in

he Default network, NV showed decreased between-subject correlations

n comparison with RS. 

Noticeably, differences in within-subject correlations between NV

onditions and RS are less pronounced in the RS-derived networks than

n the meta-analytic networks. This is further supported by the fact that

DMs of RS and NV stimuli tended to cluster together more often in RS

erived networks ( Fig. 2 ). Furthermore, within- and especially between-

ubject correlations are largely increased for the RS networks, resulting

n reduced identifiability in RS derived networks compared to the meta-

nalytic networks. On the one hand, meta-analytic networks seem to

e more sensitive to differences between NV stimuli and RS, likely be-

ause they best represent the core nodes of a given cognitive function.

n the other hand, although within-subject correlations are increased in

S derived networks, the larger increase in between-subject similarity

vershadows this effect and consequently leads to decreased identifiabil-

ty. Taken together, the present results underline the viability of using

pecific meta-analytic networks for reliably identifying subjects’ brain

onnectivity patterns under NV conditions. 

.6. Limitations 

While the current study sheds new light onto individual differences

n, and stability of, brain states elicited by movie watching, it comes with

ome limitations. Firstly, individual outliers might have biased iden-

ification accuracies, due to the small sample size. However, previous

tudies on RS and NV reported similar identification accuracies as those

chieved in this study ( Finn et al., 2015 ; Vanderwal et al., 2017 ). Never-

heless, future studies should be conducted on larger samples to confirm

ur results. Secondly, while we demonstrated enhanced individual dif-

erence and identifiability for certain stimulus-network combinations,

ur study did not include any phenotypes. Therefore this study is not

uited to determine whether enhanced individual differences under NV

an be used to more accurately predict phenotypes as compared to RS.

ence, future studies should investigate the interplay between increased

dentifiability and the accuracy of phenotype predictions. Thirdly, reli-

bility of FC might at least partly be driven by structured noise such as

ascular effects ( Varikuti et al., 2017 ). Although we applied a number of

enoising strategies, results might thus be confounded by non-neuronal

ignals. Additionally, only static FC was considered in the present study.

uture studies investigating dynamic FC might shed more light on how

ndividual variability in functional brain organization changes over the

ime course of a movie. A previous study on dynamic FC showed that

V improved test-retest reliability over RS, similar to the results in this

tudy ( Zhang et al., 2022 ). Finally, it was not assessed whether partici-

ants had seen any of the movie clips prior to participating in the study.

nowing the film beforehand could affect engagement of the participant

nd thereby modulate the effect of NV. In addition, previous studies

ave shown that expected stimuli can decrease the neuronal response

 Alink et al., 2010 ; Koster-Hale and Saxe, 2013 ). Since the three sessions

n our study were conducted within a week, participants are expected to

e rather familiar with the movie content during the second and third

ession. Therefore, it is possible that the predictable content reduced

he neuronal response and influenced our results. However, our results

howed that connectivity patterns rather clustered according to stimu-

us than repetition, which suggests that the same movie stimulus can be

sed repeatedly to study FC of a subject across various time points. Sim-

larly, a study by Wang et al. (2017) showed that movie fMRI increased

eliability over RS across two sessions. The authors concluded that the

ffect that is achieved by increased engagement during movie watching,
12 
utweighs the impact of familiarity with a given movie. Taken together,

hese findings encourage the application of movie fMRI in clinical stud-

es where it is necessary to monitor patients over a longer period of

ime. 

. Conclusions 

NV has been suggested to show high potential for emphasizing indi-

idual differences, but effects have often been reported on a whole-brain

evel only. Our study extends the current knowledge by characterizing

he influence of NV on FC in meta-analytically derived functional net-

orks. We show that NV increases identifiability of individuals based

n functional connectivity in certain networks. However, there is not

ne naturalistic stimulus that will enhance individual differences across

he brain. Therefore it is crucial to select the appropriate stimulus and

etworks for the research question at hand. 
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