
F M: Pre- & postcentral

F M: Frontal, temporal

Jan Kasper1,2, Svenja Caspers3,4, Leon D. Lotter1,2,5, Felix Hoffstaedter1,2, Simon B. Eickhoff1,2, Jürgen Dukart1,2

1Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany 
2Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
3Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany

4Institute of Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
5Max Planck School of Cognition, Leipzig, Germany

Brain function – neurotransmitter co-localization: 

Effects of aging and deviations in Parkinson’s disease

MethodsIntroduction

Results

Discussion

Acknowledgments: Thanks a lot to my colleagues and tutors: Svenja Caspers (INM-1), Leon D. Lotter (INM-7), Felix Hoffstaedter (INM-7), Simon Eickhoff (INM-7), Jürgen Dukart (INM-7) + Team of INM-7 for their support in organization and data management!

Background

• Aging is major risk factor1 for neurodegenerative diseases (ND),

like Parkinson‘s disease (PD), Alzheimer‘s disease, etc.

• Previous research on age-related brain alterations on multiple levels:

− Structural, like connectivity or volumes

− Chemical, like neurotransmitter (NT) systems

− Functional, like local activity or synchronicity

• Sparse research on interrelationships between different levels, such

as co-localizations of brain function and neurotransmitter systems

• Aging effects and deviations from normal co-localization in patients

with ND may contribute to understanding the mechanisms

underlying brain aging and disease-related brain pathology

Objectives

• Which neurotransmitter systems co-localize with brain function?

• A) Does co-localization change (sex dependent) during aging?

• B) Do patients with PD deviate from the normal range?

• C) Do aging effects and sex differences in brain function co-localize

with NT systems?

Open-source2 Cohorts

• 26k Healthy controls (44 - 82 years; 54% F)

• 58 Patients with PD (52 - 80 years; 45% F)

Voxel-wise measures of activity & synchronicity

• Fractional amplitude of low-frequency fluctuations

(fALFF) ~ brain activity

• Local correlation (LCOR) ~ local synchronicity

• Global correlation (GCOR) ~ global synchronicity

• Aging effects and sex differences (multiple linear 

regression and T-contrast) using SPM122

Co-localization analyses

• Individual Spearman correlation between brain 

function and 19 NT systems (co-localizations) 

using JuSpace3 
➔ Fisher‘s z(Spearman ρ)

• Aging effects (linear regression) and sex differences 

(t-tests) in Fisher‘s z(Spearman ρ)

• Normative modeling of co-localizations using

PCNtoolkit4

Parkinson‘s disease analyses

• Identify NT systems regarding which PD deviate

significantly (t-test on z-scores) from the norm

• Correlation of deviation with disease duration

Limitations

• Limited generalizability due to healthy controls bias31 in

the UK-Biobank: Participant are socioeconomically

advantaged, drink less alcohol, and smoke less than a

nationally representative cohort

• PD duration is only proxy for disease staging

• PET maps of healthy subjects are proxy for true

distribution of NT systems. Unfortunately, there is little

longitudinal PET data from healthy subjects

• Both aging and sex differences have strong effects on

brain function – neurotransmitter co-localizations. Taking

them into is crucial for deriving appropriate deviation

scores

• NET rich regions may be particularly vulerable to brain

function changes during aging. NET is involved in

cognitive functions known to be impaired in the elderly,

including working memory, cognitive control, and

neuronal plasticity5

A) Aging effects and sex differences in co-localization B) Deviations in Parkinson‘s disease
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• Effects of aging and sex differences on local brain activity

and synchronicity are similar but more widespread than in

previous studies6-9

• Deviations from normal co-localization levels were found

for neurotransmitter whose availability was reported to be

altered in PD10-26. We found evidence for potentially

impaired NT systems (5-HT4, 5-HT6, D1, and µ) in PD

for which deviations from normal levels had either not

previously been found or had not yet been investigated27-30
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