Epitaxial iron oxide nanoislands on SrTiO₃ – Structure, Arrangement and Magnetism

S. Tober¹, M. H. Hamed¹, Y. Xu¹, A. Qdemat¹, C. Bednarski-Meinke¹, U. Rücker¹, O. Petracic¹, M. Tehrani², J.-C. Schober², E. E. Beck², A. Stierle², E. Kentzinger¹ and T. Brückel¹

¹Jülich Centre for Neutron Science (JCNS) and Peter Grünberg Institut (PGI), JARA-FIT, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

²Centre for X-ray and Nanoscience, Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany

Magnetite (Fe₃O₄) nanostructures such as thin films, nanoparticles and nanoparticle assemblies have applications in medicine, material science, catalysis and as a basis for magneto-electric devices [1,2,3,4].

Compared with bulk materials, the magnetic properties of magnetite nanostructures differ significantly due to size effects like shape anisotropy and superparamagnetism. Additionally, the growth procedure and oxidation/reduction reactions cause defects such as magnetically unordered surface structures and antiphase boundaries [5]. Iron oxide nanoislands grown on (001) oriented SrTiO₃ by reactive molecular beam epitaxy could serve as a model system to study these effects. The large lattice mismatch between SrTiO₃ facilitates the growth of separated nanoislands while the interaction with SrTiO₃ further modifies the chemical, magnetic and electronic properties of the iron oxide nanostructures [6]. We present the characterisation of iron oxide nanostructures on SrTiO₃ by grazing incidence small angle scattering (GISAXS, Fig. 1), reflection high energy electron diffraction (RHEED, Fig. 1, inset), surface X-ray diffraction and SQUID magnetometry suggesting the growth of ferrimagnetic crystalline square shaped Fe₃O₄ islands oriented along the SrTiO₃ (110) directions.

Due to their ordered arrangement and well-defined structure, the islands constitute a simplified model system for further studies of the magnetic properties of nanostructured Fe_3O_4 .

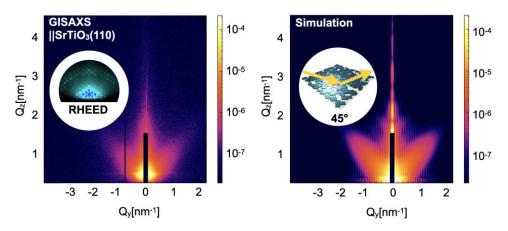


Fig. 1 GISAXS image (left) and simulation (right) of the nanoislands. While RHEED shows the crystal-linity of the iron oxide islands (left inset), GISAXS suggests facet ordering along the SrTiO₃ (110) direction as in the model used for the simulation (right inset).

[1] A. Dreyer *et al.*, Nature Mat. **15**, 5, (2016), [2] N. Nandakumaran *et al.*, Adv. Mater. **33**, 24, 2008683 (2021); [3] C. Ratnasamy *et al.*, Catal. Rev. **51**, 325 (2009); [4] D. T. Margulies *et al.*, Phys. Rev. Lett. **79**, 5162 (1997) [5] T. Köhler *et al.*, Nanoscale **13**, 2040 (2021); [6] M. H. Hamed, *et al.*, ACS Applied Materials & Interfaces, **11**, 7, (2019)