001     1006738
005     20230901204609.0
024 7 _ |a 2128/34311
|2 Handle
037 _ _ |a FZJ-2023-01817
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Fonck, Simon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 16. Interdisziplinäres Symposium Automatisierungstechnische Verfahren für die Medizintechnik
|g AUTOMED
|c Gießen
|d 2023-03-30 - 2023-03-31
|w Germany
245 _ _ |a Implementation of ResNet-50 for the Detection of ARDS in Chest X-Rays using transfer-learning
260 _ _ |a Lübeck
|c 2023
|b Infinite Science GmbH
300 _ _ |a ID 742
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1693558632_4373
|2 PUB:(DE-HGF)
520 _ _ |a Acute Respiratory Distress Syndrome is a severe condition with high morbidity and mortality. The current standard for the diagnosis of ARDS was proposed by the Berlin-Definition in 2012. However, studies have shown, that ARDS is often recognized too late or not at all. Smart methods, like machine learning algorithms, may help clinicians to identify ARDS earlier and therefore initiate the appropriate therapy. To address the imaging assessment of the Berlin-Definition, a deep learning model for the detection of ARDS in x-rays is proposed. The model achieved an AUCscore of 92.6%, a sensitivity of 87% and a specificity of 97%.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)
|0 G:(BMBF)01ZZ1803M
|c 01ZZ1803M
|x 1
700 1 _ |a Fritsch, Sebastian
|0 P:(DE-Juel1)185651
|b 1
|u fzj
700 1 _ |a Nottenkämper, Gina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stollenwerck, Andre
|0 P:(DE-HGF)0
|b 3
773 _ _ |0 PERI:(DE-600)3023403-7
|n 1
|p ID 742
|t Proceedings on automation in medical engineering
|v 2
|y 2023
856 4 _ |u https://www.journals.infinite-science.de/index.php/automed/article/view/742
856 4 _ |u https://juser.fz-juelich.de/record/1006738/files/ResNet-50%20for%20the%20Detection%20of%20ARDS.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006738
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185651
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21