001     1006775
005     20240315203645.0
024 7 _ |a 10.48550/ARXIV.2211.08527
|2 doi
024 7 _ |a 10.48550/arXiv.2211.08527
|2 doi
024 7 _ |a 2128/34376
|2 Handle
037 _ _ |a FZJ-2023-01831
100 1 _ |a Gutzen, Robin
|0 P:(DE-Juel1)171572
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Comparing apples to apples -- Using a modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1710500694_26536
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Neuroscience is moving towards a more integrative discipline, where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow wave activity (< 1 Hz), which occurs during unconscious brain states like sleep and general anesthesia, and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow wave characteristics across multiple, openly available ECoG and calcium imaging datasets.
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)
|0 G:(DE-Juel-1)iBehave-20220812
|c iBehave-20220812
|x 3
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neurons and Cognition (q-bio.NC)
|2 Other
650 _ 7 |a Quantitative Methods (q-bio.QM)
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
700 1 _ |a De Bonis, Giulia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a De Luca, Chiara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pastorelli, Elena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Capone, Cristiano
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mascaro, Anna Letizia Allegra
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Resta, Francesco
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Manasanch, Arnau
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pavone, Francesco Saverio
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sanchez-Vives, Maria V.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mattia, Maurizio
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 11
|u fzj
700 1 _ |a Paolucci, Pier Stanislao
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 13
|u fzj
773 _ _ |a 10.48550/arXiv.2211.08527
856 4 _ |u https://juser.fz-juelich.de/record/1006775/files/Gutzen%20et%20al_2022_Comparing%20apples%20to%20apples%20--%20Using%20a%20modular%20and%20adaptable%20analysis%20pipeline.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006775
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171572
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)144168
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 11
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21