001006783 001__ 1006783
001006783 005__ 20240313095013.0
001006783 0247_ $$2doi$$a10.1145/3584954.3585000
001006783 0247_ $$2Handle$$a2128/34305
001006783 0247_ $$2WOS$$aWOS:001089568500017
001006783 037__ $$aFZJ-2023-01836
001006783 1001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b0$$eCorresponding author
001006783 1112_ $$aNICE 2023: Neuro-Inspired Computational Elements Conference$$cSan Antonio TX USA$$d2023-04-03 - 2023-04-07$$wUSA
001006783 245__ $$aDemonstration of neuromorphic sequence learning on a memristive array
001006783 260__ $$bACM New York, NY, USA$$c2023
001006783 29510 $$aNeuro-Inspired Computational Elements Conference : [Proceedings] - ACM New York, NY, USA, 2023. - ISBN 9781450399470 - doi:10.1145/3584954.3585000
001006783 300__ $$a1
001006783 3367_ $$2ORCID$$aCONFERENCE_PAPER
001006783 3367_ $$033$$2EndNote$$aConference Paper
001006783 3367_ $$2BibTeX$$aINPROCEEDINGS
001006783 3367_ $$2DRIVER$$aconferenceObject
001006783 3367_ $$2DataCite$$aOutput Types/Conference Paper
001006783 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1681988731_28103
001006783 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001006783 520__ $$aSequence learning and prediction are considered principle computations performed by biological brains. Machine learning algorithms solve this type of task, but they require large amounts of training data and a substantial energy budget. An approach to overcome these issues and enable sequence learning with brain-like performance is neuromorphic hardware with brain-inspired learning algorithms. The Hierarchical Temporal Memory (HTM) is an algorithm inspired by the working principles of the neocortex and is able to learn and predict continuous sequences of elements. In a previous study, we showed that memristive devices, an emerging non-volatile memory technology, that is considered for energy efficient neuromorphic hardware, can be used as synapses in a biologically plausible version of the temporal memory algorithm of the HTM model. We subsequently presented a simulation study of an analog-mixed signal memristive hardware architecture that can implement the temporal learning algorithm. This architecture, which we refer to as MemSpikingTM, is based on a memristive crossbar array and a control circuitry implementing the neurons and the learning mechanism. In the study presented here, we demonstrate the functionality of the MemSpikingTM algorithm on a real memristive crossbar array, taped out in a commercially available 130nm CMOS technology node co-integrated with HfO based memristive devices. We explain the algorithm and the functionality of the crossbar array and peripheral circuitry and finally demonstrate context-dependent sequence learning using high-order sequences.
001006783 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001006783 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x1
001006783 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x2
001006783 588__ $$aDataset connected to CrossRef Conference
001006783 7001_ $$0P:(DE-Juel1)177689$$aZiegler, Tobias$$b1
001006783 7001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b2
001006783 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b3
001006783 7001_ $$0P:(DE-Juel1)131022$$aWaser, Rainer$$b4
001006783 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5
001006783 7001_ $$00000-0002-6766-8553$$aWouters, Dirk$$b6
001006783 773__ $$a10.1145/3584954.3585000
001006783 8564_ $$uhttps://juser.fz-juelich.de/record/1006783/files/Invoice_1%202%208%200%200%204%202%201.pdf
001006783 8564_ $$uhttps://juser.fz-juelich.de/record/1006783/files/NICE_MemSpikingTM-final.pdf$$yOpenAccess
001006783 8767_ $$812800421$$92023-03-07$$d2023-04-20$$eHybrid-OA$$jZahlung erfolgt$$zUSD 1000,-; FZJ-2023-01405
001006783 909CO $$ooai:juser.fz-juelich.de:1006783$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b0$$kFZJ
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177689$$aForschungszentrum Jülich$$b1$$kFZJ
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b2$$kFZJ
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b3$$kFZJ
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
001006783 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
001006783 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001006783 9141_ $$y2023
001006783 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006783 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006783 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006783 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001006783 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001006783 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001006783 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x3
001006783 9201_ $$0I:(DE-Juel1)PGI-15-20210701$$kPGI-15$$lNeuromorphic Software Eco System$$x4
001006783 9801_ $$aFullTexts
001006783 980__ $$acontrib
001006783 980__ $$aVDB
001006783 980__ $$acontb
001006783 980__ $$aI:(DE-Juel1)PGI-7-20110106
001006783 980__ $$aI:(DE-Juel1)PGI-10-20170113
001006783 980__ $$aI:(DE-82)080009_20140620
001006783 980__ $$aI:(DE-Juel1)INM-6-20090406
001006783 980__ $$aI:(DE-Juel1)PGI-15-20210701
001006783 980__ $$aUNRESTRICTED
001006783 980__ $$aAPC
001006783 981__ $$aI:(DE-Juel1)IAS-6-20130828