001     1006783
005     20240313095013.0
024 7 _ |a 10.1145/3584954.3585000
|2 doi
024 7 _ |a 2128/34305
|2 Handle
024 7 _ |a WOS:001089568500017
|2 WOS
037 _ _ |a FZJ-2023-01836
100 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 0
|e Corresponding author
111 2 _ |a NICE 2023: Neuro-Inspired Computational Elements Conference
|c San Antonio TX USA
|d 2023-04-03 - 2023-04-07
|w USA
245 _ _ |a Demonstration of neuromorphic sequence learning on a memristive array
260 _ _ |c 2023
|b ACM New York, NY, USA
295 1 0 |a Neuro-Inspired Computational Elements Conference : [Proceedings] - ACM New York, NY, USA, 2023. - ISBN 9781450399470 - doi:10.1145/3584954.3585000
300 _ _ |a 1
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1681988731_28103
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Sequence learning and prediction are considered principle computations performed by biological brains. Machine learning algorithms solve this type of task, but they require large amounts of training data and a substantial energy budget. An approach to overcome these issues and enable sequence learning with brain-like performance is neuromorphic hardware with brain-inspired learning algorithms. The Hierarchical Temporal Memory (HTM) is an algorithm inspired by the working principles of the neocortex and is able to learn and predict continuous sequences of elements. In a previous study, we showed that memristive devices, an emerging non-volatile memory technology, that is considered for energy efficient neuromorphic hardware, can be used as synapses in a biologically plausible version of the temporal memory algorithm of the HTM model. We subsequently presented a simulation study of an analog-mixed signal memristive hardware architecture that can implement the temporal learning algorithm. This architecture, which we refer to as MemSpikingTM, is based on a memristive crossbar array and a control circuitry implementing the neurons and the learning mechanism. In the study presented here, we demonstrate the functionality of the MemSpikingTM algorithm on a real memristive crossbar array, taped out in a commercially available 130nm CMOS technology node co-integrated with HfO based memristive devices. We explain the algorithm and the functionality of the crossbar array and peripheral circuitry and finally demonstrate context-dependent sequence learning using high-order sequences.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Ziegler, Tobias
|0 P:(DE-Juel1)177689
|b 1
700 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 2
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 3
700 1 _ |a Waser, Rainer
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 5
700 1 _ |a Wouters, Dirk
|0 0000-0002-6766-8553
|b 6
773 _ _ |a 10.1145/3584954.3585000
856 4 _ |u https://juser.fz-juelich.de/record/1006783/files/Invoice_1%202%208%200%200%204%202%201.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1006783/files/NICE_MemSpikingTM-final.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006783
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177689
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 4
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21