001     1006790
005     20240313095014.0
024 7 _ |a 10.1088/2634-4386/acca45
|2 doi
024 7 _ |a 2128/34434
|2 Handle
024 7 _ |a WOS:001064075800001
|2 WOS
037 _ _ |a FZJ-2023-01843
082 _ _ |a 621.3
100 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 0
|e Corresponding author
245 _ _ |a System model of neuromorphic sequence learning on a memristive crossbar array
260 _ _ |a Bristol
|c 2023
|b IOP Publishing Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684227593_25722
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Machine learning models for sequence learning and processing often suffer from high energy consumption and require large amounts of training data. The brain presents more efficient solutions to how these types of tasks can be solved. While this has inspired the conception of novel brain-inspired algorithms, their realizations remain constrained to conventional von-Neumann machines. Therefore, the potential power efficiency of the algorithm cannot be exploited due to the inherent memory bottleneck of the computing architecture. Therefore, we present in this paper a dedicated hardware implementation of a biologically plausible version of the Temporal Memory component of the Hierarchical Temporal Memory concept. Our implementation is built on a memristive crossbar array and is the result of a hardware-algorithm co-design process. Rather than using the memristive devices solely for data storage, our approach leverages their specific switching dynamics to propose a formulation of the peripheral circuitry, resulting in a more efficient design. By combining a brain-like algorithm with emerging non-volatile memristive device technology we strive for maximum energy efficiency. We present simulation results on the training of complex high-order sequences and discuss how the system is able to predict in a context-dependent manner. Finally, we investigate the energy consumption during the training and conclude with a discussion of scaling prospects.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 1
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 2
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 3
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 4
|u fzj
700 1 _ |a Wouters, Dirk
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1088/2634-4386/acca45
|0 PERI:(DE-600)3099608-9
|p 024002
|t Neuromorphic computing and engineering
|v 3
|y 2023
|x 2634-4386
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006790/files/MemSpikingTM_Supplement_final.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006790/files/MemSpikingTM_final.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006790/files/Siegel_2023_Neuromorph._Comput._Eng._3_024002.pdf
909 C O |o oai:juser.fz-juelich.de:1006790
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:53:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:53:40Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review, Double anonymous peer review
|d 2023-04-12T14:53:40Z
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 4
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)INM-6-20090406
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21