Hauptseite > Publikationsdatenbank > System model of neuromorphic sequence learning on a memristive crossbar array > print |
001 | 1006790 | ||
005 | 20240313095014.0 | ||
024 | 7 | _ | |a 10.1088/2634-4386/acca45 |2 doi |
024 | 7 | _ | |a 2128/34434 |2 Handle |
024 | 7 | _ | |a WOS:001064075800001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01843 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Siegel, Sebastian |0 P:(DE-Juel1)174486 |b 0 |e Corresponding author |
245 | _ | _ | |a System model of neuromorphic sequence learning on a memristive crossbar array |
260 | _ | _ | |a Bristol |c 2023 |b IOP Publishing Ltd. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1684227593_25722 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Machine learning models for sequence learning and processing often suffer from high energy consumption and require large amounts of training data. The brain presents more efficient solutions to how these types of tasks can be solved. While this has inspired the conception of novel brain-inspired algorithms, their realizations remain constrained to conventional von-Neumann machines. Therefore, the potential power efficiency of the algorithm cannot be exploited due to the inherent memory bottleneck of the computing architecture. Therefore, we present in this paper a dedicated hardware implementation of a biologically plausible version of the Temporal Memory component of the Hierarchical Temporal Memory concept. Our implementation is built on a memristive crossbar array and is the result of a hardware-algorithm co-design process. Rather than using the memristive devices solely for data storage, our approach leverages their specific switching dynamics to propose a formulation of the peripheral circuitry, resulting in a more efficient design. By combining a brain-like algorithm with emerging non-volatile memristive device technology we strive for maximum energy efficiency. We present simulation results on the training of complex high-order sequences and discuss how the system is able to predict in a context-dependent manner. Finally, we investigate the energy consumption during the training and conclude with a discussion of scaling prospects. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399) |0 G:(DE-82)BMBF-16ME0399 |c BMBF-16ME0399 |x 1 |
536 | _ | _ | |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 2 |
536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 3 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 4 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 5 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bouhadjar, Younes |0 P:(DE-Juel1)176778 |b 1 |
700 | 1 | _ | |a Tetzlaff, Tom |0 P:(DE-Juel1)145211 |b 2 |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 3 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 4 |u fzj |
700 | 1 | _ | |a Wouters, Dirk |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1088/2634-4386/acca45 |0 PERI:(DE-600)3099608-9 |p 024002 |t Neuromorphic computing and engineering |v 3 |y 2023 |x 2634-4386 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006790/files/MemSpikingTM_Supplement_final.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006790/files/MemSpikingTM_final.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1006790/files/Siegel_2023_Neuromorph._Comput._Eng._3_024002.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1006790 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174486 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176778 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145211 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-18 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T14:53:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T14:53:40Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review, Double anonymous peer review |d 2023-04-12T14:53:40Z |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-15-20210701 |k PGI-15 |l Neuromorphic Software Eco System |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 4 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-15-20210701 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|