001006797 001__ 1006797
001006797 005__ 20231027114401.0
001006797 0247_ $$2doi$$a10.3390/nano13081325
001006797 0247_ $$2Handle$$a2128/34316
001006797 0247_ $$2pmid$$a37110910
001006797 0247_ $$2WOS$$aWOS:000979630100001
001006797 037__ $$aFZJ-2023-01850
001006797 082__ $$a540
001006797 1001_ $$00000-0002-0552-2380$$aZhao, Xianyue$$b0
001006797 245__ $$aReview on Resistive Switching Devices Based on Multiferroic BiFeO3
001006797 260__ $$aBasel$$bMDPI$$c2023
001006797 3367_ $$2DRIVER$$aarticle
001006797 3367_ $$2DataCite$$aOutput Types/Journal article
001006797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681803604_6498
001006797 3367_ $$2BibTeX$$aARTICLE
001006797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006797 3367_ $$00$$2EndNote$$aJournal Article
001006797 520__ $$aThis review provides a comprehensive examination of the state-of-the-art research on resistive switching (RS) in BiFeO3 (BFO)-based memristive devices. By exploring possible fabrication techniques for preparing the functional BFO layers in memristive devices, the constructed lattice systems and corresponding crystal types responsible for RS behaviors in BFO-based memristive devices are analyzed. The physical mechanisms underlying RS in BFO-based memristive devices, i.e., ferroelectricity and valence change memory, are thoroughly reviewed, and the impact of various effects such as the doping effect, especially in the BFO layer, is evaluated. Finally, this review provides the applications of BFO devices and discusses the valid criteria for evaluating the energy consumption in RS and potential optimization techniques for memristive devices.
001006797 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001006797 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
001006797 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x2
001006797 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x3
001006797 536__ $$0G:(GEPRIS)441906609$$aDFG project 441906609 - Domino Processing Unit: Auf dem Weg zum hocheffizienten In-Memory-Rechenwerk (MemDPU) (441906609)$$c441906609$$x4
001006797 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006797 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1
001006797 7001_ $$00000-0002-6563-2725$$aPolian, Ilia$$b2
001006797 7001_ $$00000-0001-7100-6926$$aSchmidt, Heidemarie$$b3
001006797 7001_ $$0P:(DE-Juel1)138169$$aDu, Nan$$b4$$eCorresponding author
001006797 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano13081325$$gVol. 13, no. 8, p. 1325 -$$n8$$p1325 -$$tNanomaterials$$v13$$x2079-4991$$y2023
001006797 8564_ $$uhttps://juser.fz-juelich.de/record/1006797/files/nanomaterials-13-01325-v3.pdf$$yOpenAccess
001006797 909CO $$ooai:juser.fz-juelich.de:1006797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
001006797 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001006797 9141_ $$y2023
001006797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001006797 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001006797 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001006797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006797 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001006797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:18Z
001006797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:18Z
001006797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:18Z
001006797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001006797 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
001006797 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001006797 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001006797 980__ $$ajournal
001006797 980__ $$aVDB
001006797 980__ $$aUNRESTRICTED
001006797 980__ $$aI:(DE-Juel1)PGI-7-20110106
001006797 980__ $$aI:(DE-82)080009_20140620
001006797 9801_ $$aFullTexts