001006812 001__ 1006812
001006812 005__ 20230929112525.0
001006812 0247_ $$2doi$$a10.1007/s10533-022-01005-8
001006812 0247_ $$2ISSN$$a1939-1234
001006812 0247_ $$2ISSN$$a0168-2563
001006812 0247_ $$2ISSN$$a1573-515X
001006812 0247_ $$2Handle$$a2128/34313
001006812 0247_ $$2WOS$$aWOS:000898672000001
001006812 037__ $$aFZJ-2023-01865
001006812 082__ $$a550
001006812 1001_ $$00000-0001-9870-4580$$aRindt, Oscar$$b0$$eCorresponding author
001006812 245__ $$aBiogeochemical dynamics during snowmelt and in summer in the Alps
001006812 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2023
001006812 3367_ $$2DRIVER$$aarticle
001006812 3367_ $$2DataCite$$aOutput Types/Journal article
001006812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681797373_18776
001006812 3367_ $$2BibTeX$$aARTICLE
001006812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006812 3367_ $$00$$2EndNote$$aJournal Article
001006812 520__ $$aIn alpine zones, soil microbial biomass and activity are strongly dependent on the seasonal snow cover. Current models assume that microbial biomass reaches an annual peak in winter under the insulating snowpack with a subsequent sharp decline during snowmelt. In this study, we investigated the seasonal dynamics of the soil microbial biomass in the Central Alps, where usually early snowfall buffers winter soil temperatures. We conducted a large-scale survey in three mountains around Davos (Switzerland) along altitudinal gradients from approximately 1900 to 2800 m above sea level. Using a space-for-time approach during snowmelt, soil samples were taken (1) under, (2) at the edge of, and (3) one meter away from remaining snow patches. One additional sample per site was taken in summer to further evaluate the seasonal dynamics. In total, 184 soil samples from 46 different sites were analyzed. We measured microbial biomass C and N, enzymatic activity and dissolved C and N. We observed an increase of microbial biomass and dissolved C during and immediately after snowmelt, as well as an increase from spring to summer. We suggest that the absence of soil freezing in winter and the growing amounts of dissolved C supported a continued growth, without a sudden collapse of the microbial biomass. Our results underline the importance of the insulating effect of the seasonal snow cover for the microbial dynamics. Global warming is modifying the timing and abundance of the seasonal snow cover, and our results will help to refine models for the dynamics of soil microbes in alpine ecosystems.
001006812 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001006812 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006812 7001_ $$00000-0002-4973-3921$$aRosinger, Christoph$$b1
001006812 7001_ $$00000-0003-2656-1183$$aBonkowski, Michael$$b2
001006812 7001_ $$00000-0002-2486-9988$$aRixen, Christian$$b3
001006812 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b4
001006812 7001_ $$00000-0002-5718-1354$$aUrich, Tim$$b5
001006812 7001_ $$00000-0001-6265-1907$$aFiore-Donno, Anna Maria$$b6
001006812 773__ $$0PERI:(DE-600)1478541-9$$a10.1007/s10533-022-01005-8$$gVol. 162, no. 2, p. 257 - 266$$n2$$p257 - 266$$tBiogeochemistry$$v162$$x1939-1234$$y2023
001006812 8564_ $$uhttps://juser.fz-juelich.de/record/1006812/files/s10533-022-01005-8.pdf$$yOpenAccess
001006812 909CO $$ooai:juser.fz-juelich.de:1006812$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b4$$kFZJ
001006812 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001006812 9141_ $$y2023
001006812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
001006812 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-16
001006812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
001006812 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-16$$wger
001006812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006812 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-25$$wger
001006812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOCHEMISTRY : 2022$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-25
001006812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001006812 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001006812 980__ $$ajournal
001006812 980__ $$aVDB
001006812 980__ $$aUNRESTRICTED
001006812 980__ $$aI:(DE-Juel1)IBG-3-20101118
001006812 9801_ $$aFullTexts