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Abstract: Lack of sanitation is the underlying cause of many diarrheal infections and associated
deaths. Improving sanitation through the set-up of ecological sanitation dry toilets, followed by the
thermophilic composting of human excreta, could offer a solution. In addition, treating the excreta
via thermophilic composting allows us to recycle the nutrients to be used as fertilizer for agriculture.
However, for this purpose, the compost should be free of pathogens. We conducted a thermophilic
composting trial over 204 to 256 days with human excreta, along with vegetable scraps and teff
straw, with and without biochar. A sawdust–cattle manure mixture with the same supplements
served as a control treatment. To evaluate the hygienic quality of the mature compost, the bacterial
indicators Escherichia coli and Salmonella were assessed using the cultivation-based most probable
number method. In addition, Ascaris lumbricoides eggs were quantified through light microscopy.
The amount of detected E. coli was below the thresholds of German and European regulations for
organic fertilizer. Salmonella and Ascaris eggs were not detected. No significant differences between
the treatments were observed. Thus, the composting process was efficient in decreasing the number
of potential human pathogens. The mature compost fulfilled the legal regulations on organic fertilizer
regarding potential human pathogens.

Keywords: thermophilic composting; ecological sanitation; dry toilets; pathogens; E. coli; Salmonella;
MPN; Ascaris lumbricoides eggs; Mini-FLOTAC; biochar

1. Introduction

Worldwide, 2.3 billion people do not have access to basic sanitation. With less than
50% of its population using basic sanitation, sub-Saharan Africa is one of the most affected
regions in the world [1,2]. Lack of sanitation was attributed to be the underlying cause of
an estimated 430,000 deaths of diarrheal infections in low- and middle-income countries
in 2016, with more than half of them in Africa [3]. Ecological sanitation (EcoSan) aims to
establish a closed-loop system between on-site sanitation and agriculture by recycling the
nutrients contained in excreta [4]. Dry toilets, which are easy to establish, allow the collec-
tion of feces and urine for their subsequent use as fertilizer, thereby improving soil fertility
and saving water [4–6]. However, various human pathogens are present, particularly in
feces [7–10]. Pre-treatment of the excreta is necessary to prevent the entry of pathogens into
the field and the food chain. Campylobacter, E. coli, Salmonella, Providencia, and Listeria spp.
are examples for human pathogens that can be transmitted through, e.g., animal manures
used for fertilization [11]. Enteric pathogens such as E. coli and Salmonella, moreover, can
persist in soil and colonize plants, thus highlighting the importance of preventing entry
routes to the food production sector [12–14]. Aside from bacterial pathogens, infection with
viruses and parasites, such as the protozoan Cryptosporidium spp. (via oocyst stages) or the

Sustainability 2023, 15, 4624. https://doi.org/10.3390/su15054624 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15054624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1587-722X
https://orcid.org/0000-0001-6149-5754
https://orcid.org/0000-0003-3228-8531
https://doi.org/10.3390/su15054624
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15054624?type=check_update&version=1


Sustainability 2023, 15, 4624 2 of 11

tapeworm Taenia (via eggs), can occur through contaminated raw vegetables [15–17]. One
option to sanitize human and animal dung is thermophilic composting, a controlled, aero-
bic, and exothermic process, transforming organic material into humus [18–20]. Biochar as
an amendment to the compost may improve the process; for example, through increased
aeration, an extended thermophilic phase, or higher temperatures [21,22].

In China, the use of human excreta (so-called “night soil”) as a fertilizer has a long
tradition [23] and is still practiced at household scale in some rural areas [24]. Similarly,
latrine wastes, usually composted, are applied to soils in rural Vietnam [25]. In some African
countries such as Senegal and Uganda, fecal sludge is used for fertilization, although other
uses such as energy production are more prevalent [26]. In the US and the UK, over 50%
and 80% of the biosolids from wastewater treatment plants are recycled for fertilization
of soils, respectively [27,28]. The EU regulates the application of sewage sludge to soils
in its sewage sludge directive of 1986 [29]. An average of 50% is used on agricultural
soils with strong variations between the member states that follow their country-specific
quality criteria [27,30]. However, this directive does not cover fertilizers derived from
human excreta or human excreta that are not collected in wastewater treatment plants [28].
Globally, an estimated 11% of the produced wastewater is reused [31].

Regulations on organic fertilizer require quantification of different indicator organ-
isms to ensure that the end-product is safe to use. Among the widely used indicators are
E. coli as a measure for fecal contamination, and Salmonella as an indicator for pathogenic
bacteria [7,32–35]. In addition, the eggs of the nematode Ascaris are used to assess the risk
of more heat-resistant organisms [7]. Apart from its role as an indicator organism, the
common roundworm Ascaris lumbricoides is the most prevalent helminth in humans world-
wide, especially in developing countries as a consequence of insufficient sanitation [10].
Two recently published systematical reviews dealt with the prevalence of human intestinal
helminth infections in Ethiopia during the last decade. Both studies found that around one
third of the population suffered from helminth infections. With 11 and 18%, respectively,
A. lumbricoides was identified as the predominant species [36,37].

We aimed to establish a closed-loop system between ecological sanitation and climate-
smart agriculture via (biochar-)compost used as organic fertilizer. Thermophilic composting
of dry toilet contents along with other organic wastes, with and without biochar, was
applied as a treatment to sanitize the fecal material. In the present study, we assessed the
effectiveness of this system regarding the elimination of human pathogenic microorganisms.
Bacterial indicators E. coli and Salmonella spp. were quantified in the mature compost
according to German regulations for organic fertilizers [32]. The potential parasitic burden
was assessed through microscopy of Ascaris eggs.

2. Materials and Methods
2.1. Composting Trial and Sampling

The composting trial, properties of compost substrates, and physical–chemical proper-
ties of the compost, including nutrient contents (C, N, P, K, Ca, Mg, and micronutrients)
during the composting process, were described in detail by Castro-Herrera et al. [38].
In brief, “humanure”, i.e., feces and urine together with toilet paper and sawdust, was
collected in dry toilets following the approach described in Jenkins [39] (Figure 1). Ther-
mophilic composting was conducted at Wondo Genet College of Forestry and Natural
Resources in southern Ethiopia between April and November 2019. The trial comprised
four treatments with four replicates each: (i) humanure, vegetable scraps and teff (Era-
grostis tef (Zuccagni) Trotter) straw (HM); (ii) the same ingredients as in (i) plus biochar
(HM+BC); (iii) cattle manure–sawdust mixture, vegetable scraps, and teff straw (CM); and
(iv) the same ingredients as in (iii) plus biochar (CM+BC). Cattle manure served as a control
for the humanure treatments, and treatments without biochar served as controls for the
biochar treatments. Thermophilic composting was conducted in boxes of 1.5 × 1.5 × 1.4 m
(width × depth × height), insulated with teff straw (Figure 1).
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Figure 1. An installed dry toilet (A); a toilet bucket filled with collected materials (B); and a compost
box after experimental set-up with dimensions (C) (Photos: K. Prost and K. A. Werner).

The four composting replicates of each treatment were combined and distributed
into two boxes (Figure 1) in September 2019. Three months after combining the replicates,
samples were taken for pathogen analysis. The compost was mixed before sampling.
Samples of 100 g each were taken randomly from different positions in the compost and
stored at 4 ◦C until analysis. In total, 24 samples from the four treatments with six replicates
for each treatment were analyzed. From compost set-up to sampling, the total composting
duration was 204–256 days for the samples analyzed here. Since replicates started at
intervals of 15–18 days, composting times differed for the four replicates. A scheme
describing the experimental set-up is shown in Table 1.

2.2. Most Probable Number Method for the Detection of E. coli and Salmonella spp.

For the assessment of compost hygiene, the indicator organisms Salmonella and E. coli
were detected by means of the most probable number technique (MPN) according to
the protocol published by the German Federal Ministry for the Environment, Nature
Conservation and Nuclear Safety [32].

Compost samples were suspended 1:10 (w/v) in 0.9% sodium chloride solution and
shaken at 150 rpm at 4 ◦C overnight. Specific cultivation was conducted from triplicates of
a tenfold dilution series (dilution stages 10−2–10−9). E. coli and Salmonella analyses were
conducted in parallel from the same dilutions.

For the detection of E. coli, 1 mL of each dilution was transferred to 9 mL MacConkey
broth (Carl Roth GmbH, Karlsruhe, Germany) and vortexed briefly. After incubation at
37 ◦C for 24 h ± 1 h, samples were checked for a color change to yellow, indicating lactose
fermentation. These samples were streaked on MacConkey agar (Carl Roth GmbH) to
confirm E. coli growth.
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Table 1. Set-up of the composting experiment with the four treatments HM, HM+BC, CM, and
CM+BC.

Replicates * Treatments Start Combining
Replicates # Sampling # Composting Duration #

Block 1

HM
HM+BC
CM
CM+BC

02/04/2019

15/09/2019 14/12/2019

Block 1 256 d

Block 2

HM
HM+BC
CM
CM+BC

19/04/2019 Block 2 239 d

Block 3

HM
HM+BC
CM
CM+BC

08/05/2019 Block 3 220 d

Block 4

HM
HM+BC
CM
CM+BC

24/05/2019 Block 4 204 d

HM = Human Manure (Humanure) plus sawdust, straw, and vegetable waste; CM = Cattle Manure plus sawdust,
straw, and vegetable waste; HM+BC = Human Manure (Humanure) plus sawdust, straw, vegetable waste, and
biochar; CM+BC = Human Manure (Humanure) plus sawdust, straw, vegetable waste, and biochar. * For each
treatment four replicates were set up in a randomized complete block design at intervals of 15–18 days. The
replicates are indicated as “Block 1”, “Block 2”, “Block 3”, and “Block 4” for the replicates set up at the different
dates, respectively. Each Block therefore consisted of all four treatments [38]. # The four replicates of each
treatment were combined on 15 September 2019 [38]. On 14 December 2019, sampling for pathogen analysis was
conducted and samples were stored at 4 ◦C until analysis. Due to the different starting days for the replicates, the
composting duration ranged between 204–256 days.

For the detection of Salmonella, 1 mL of each dilution was pipetted to 9 mL buffered
peptone water (Carl Roth GmbH), vortexed briefly, and incubated at 37 ◦C for 24 h ± 1 h.
Afterwards, 100 µL were transferred into 10 mL Rappaport-Vassiliadis broth (Carl Roth
GmbH), vortexed briefly, and incubated at 42 ◦C for 24 h ± 1 h. Brilliant green-lactose–
sucrose agar (BPLS, Carl Roth GmbH) and xylose–lysine–deoxycholate agar (XLD, Carl
Roth GmbH) were used for identification. One loopful of the liquid culture was streaked
to each of the agars and incubated at 37 ◦C for 24 h ± 1 h. Putative positive colonies
were transferred to standard-I-agar (15 g/L peptone ex casein, 6 g/L NaCl, 3 g/L yeast
extract, 1 g/L D (+) Glucose, 12 g/L agar-agar). After incubation at 37 ◦C overnight,
slide agglutination tests with the monoclonal test serum “Anti-Salmonella A-67 + Vi,
omnivalent” (Sifin Diagnostics GmbH, Berlin, Germany) were conducted according to the
manufacturer’s instructions.

For both organisms, positive (+) and negative (-) replicates for each dilution step were
documented. The highest three dilutions with positive results were used for the generation
of an index number (number of positive results per dilution). Statistical estimates of MPNs
of colony forming units (CFU) in the original samples were taken from the tables of De
Man (1983) by means of the index numbers [40].

2.3. Microscopy Count of Ascaris Lumbricoides Eggs

Ascaris eggs were counted by means of the Mini-FLOTAC counting chamber [41]
(Figure 2A) and a Primo Star light microscope (Carl Zeiss Microscopy GmbH, Jena, Ger-
many). The experimental procedure of the group of Samson-Himmelstjerna (FU Berlin)
was used [42]: five grams of compost were mixed and stirred well with 45 mL of saturated
sodium chloride solution. The mixture was filtered over a 0.25 mm mesh to retain the
compost particles. The filtrate was filled into the chamber and incubated for 10 min for the
eggs to float at the surface. To generate a layer thin enough for microscopy, the chamber
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was turned to separate the surface layer containing the eggs from the remaining liquid.
Two chambers of 1 mL volume each were counted for each sample. An example for Ascaris
eggs is given in Figure 2, with panel B showing the non-larvated stage usually found in
compost and panel C showing the larvated egg.
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Figure 2. Mini-FLOTAC counting chamber (A); light microscopy of Ascaris suum egg before larvation,
isolated from female worms (B); larvated A. suum egg after development in 0.1 M H2SO4 at room
temperature for 28 days (C) (Photos: Khaliel El-Said).

2.4. Statistical Analysis

Statistical significance of indicator MPNs was determined using two-tailed, paired
Student’s t-test using Microsoft Excel (Microsoft Office Home and Student 2016, Version
2301). Significance is indicated by p-values below 0.05. Significance was tested to compare
the treatments with and without biochar, both for humanure and cattle manure treatments
separately (HM versus HM+BC, and CM versus CM+BC) and for all samples (HM/CM
versus HM+BC/CM+BC). Moreover, humanure and cattle manure treatments were com-
pared, both separately (HM versus CM, and HM+BC versus CM+BC) and for the complete
set of samples (HM/HM+BC versus CM/CM+BC).

3. Results
3.1. Detection of Bacterial Indicators E. coli and Salmonella spp.

The mature compost was investigated for the presence of E. coli and Salmonella as
indicators for fecal contamination and human pathogenic bacteria, respectively, using
the cultivation-based MPN technique. E. coli was present in low numbers in treatments
HM+BC, CM, and CM+BC, with slightly higher numbers in the cattle manure treatments
(CM and CM+BC) which had served as our control treatments. Two-tailed student’s t-tests
did not reveal significant differences between HM and CM treatments or with and without
BC. Salmonella was not detected in any sample. Detailed results are given in Table 2.
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Table 2. Cultivation-based detection of E. coli and Salmonella spp. in the mature compost by means of
the MPN method [40]. Results are depicted as colony-forming units per gram compost (CFU g−1).
Numbers below 30 mark the detection limit of the method. Six samples were analyzed for each of
the four treatments (humanure (HM); cattle manure (CM); without and with biochar (HM+BC and
CM+BC), respectively. Mean values for each treatment are given below the individual counts.

Treatment Replicate * E. coli [CFU g−1] Salmonella [CFU g−1]

HM

HM_1 <30 <30
HM_2 <30 <30
HM_3 <30 <30
HM_4 <30 <30
HM_5 <30 <30
HM_6 <30 <30

HM Mean <30 <30

HM+BC

HM+BC_1 <30 <30
HM+BC_2 <30 <30
HM+BC_3 <30 <30
HM+BC_4 <30 <30
HM+BC_5 <30 <30
HM+BC_6 36 <30

HM+BC Mean <31 <30

CM

CM_1 61 <30
CM_2 <30 <30
CM_3 <30 <30
CM_4 <30 <30
CM_5 92 <30
CM_6 <30 <30

CM Mean <45.5 <30

CM+BC

CM+BC_1 <30 <30
CM+BC_2 <30 <30
CM+BC_3 <30 <30
CM+BC_4 <30 <30
CM+BC_5 150 <30
CM+BC_6 210 <30

CM+BC Mean <80 <30
* Internal label indicating the treatments (HM, HM+BC, CM, CM+BC) and sequence number of the replicates (1–6).

3.2. Ascaris Lumbricoides Eggs Microscopy Count

Light microscopy by means of the Mini-FLOTAC counting chamber was used to detect
Ascaris lumbricoides eggs as indicators of parasitic contamination in the mature compost. No
eggs were detected in any of the samples; hence, the number of eggs per gram of compost
was zero in all replicates of all treatments (Table 3).

Table 3. Ascaris egg count by means of the Mini-FLOTAC counting chamber in the mature compost.
Six samples were analyzed for each of the four treatments (humanure (HM); cattle manure (CM);
without and with biochar (HM+BC and CM+BC)), respectively. Mean values for each treatment are
given below the individual counts.

Treatment Replicate * Ascaris Egg Count/g Compost

HM

HM_1 0
HM_2 0
HM_3 0
HM_4 0
HM_5 0
HM_6 0
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Table 3. Cont.

Treatment Replicate * Ascaris Egg Count/g Compost

HM Mean 0

HM+BC

HM+BC_1 0
HM+BC_2 0
HM+BC_3 0
HM+BC_4 0
HM+BC_5 0
HM+BC_6 0

HM+BC Mean 0

CM

CM_1 0
CM_2 0
CM_3 0
CM_4 0
CM_5 0
CM_6 0

CM Mean 0

CM+BC

CM+BC_1 0
CM+BC_2 0
CM+BC_3 0
CM+BC_4 0
CM+BC_5 0
CM+BC_6 0

CM+BC Mean 0
* Internal label indicating the treatments (HM, HM+BC, CM, CM+BC) and sequence number of the replicates (1–6).

4. Discussion

In the present study, pathogen analyses were conducted to assess the hygienic state
of mature thermophilic compost from dry toilet contents and other organic wastes with
and without biochar compared to cattle manure compost with and without biochar. These
analyses complement an extensive study of physical and chemical parameters on the same
composting trial [38].

In this study, E. coli as a typical indicator organism for fecal contamination revealed low
MPNs in treatments HM+BC, CM, and CM+BC, respectively, that are far below the thresh-
old of 1 × 103 CFU g−1 of regulations by the German Environment Agency and European
Commission for sludge used as fertilizer [7,32]. E. coli MPN were below the detection limit
of the method in the HM treatment. Salmonella as an indicator for human pathogens was
not detected in any sample, which matches German and European thresholds for treated
sludge used for land application (not detectable in 50 g fresh weight) [7,32–35]. Bacteria
associated with humans or mammals are typically not adapted to elevated temperatures
for longer times [43,44]. Peak temperature values of 62–66 ◦C were reached during the com-
posting process, and mean temperatures above 60 ◦C for five to eight consecutive days [38].
For organic waste composting, temperatures of 55 ◦C for two weeks, 60 ◦C for six days, or
65 ◦C for three days are required to ensure the proper elimination of pathogens [35].

Significant decreases of E. coli MPNs were described earlier for sewage sludge
composting [45] and an eco-sanitation static composting set-up using latrine wastes and
sugarcane husks in Haiti [46]. In line with our results, the addition of biochar did not result
in clear effects on the abundance of E. coli in a recent study on compost of dry toilet contents
with and without biochar [47]. However, opposite results have also been published for the
composting of feces, sawdust, rice husk, and rice husk charcoal [48]. The authors found
the charcoal-treatment to be most effective regarding E. coli removal (not detectable after
five weeks of composting). Considering that the samples in the present study were taken
only from the mature compost after several months of composting, the time effects of
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biochar on E. coli removal cannot be assessed. This leaves the possibility open for beneficial
effects of biochar treatment regarding the sanitization of compost.

For the removal of Salmonella, a minimum peak temperature of 60 ◦C and moisture
contents of 60–65% were found to be optimal [49]. Moisture contents in the present study
were higher in the beginning (79–81%), but decreased to 60–63% in the mature compost [38].
The optimal combination was not obtained, since temperatures were lower at the time in
which the moisture contents were in the optimum range (i.e., at the end of composting,
when the compost had already cooled to ambient temperature). However, temperature
alone is an important parameter affecting the survival of Salmonella [50,51]. It can thus
be concluded that composting conditions were adequate for the removal of Salmonella.
In a study by Chung et al. [52] on composting of chicken manure, sawdust, and rice
husk without and with biochar, the treatments with 5 and 10% biochar showed slightly
faster removal of Salmonella, as compared with treatments without and with 3% biochar.
From 21 days until the end of composting after 50 days, Salmonella was not detected in
any treatment [52].

Ascaris eggs are a typical indicator of parasitic contamination due to their high resis-
tance to environmental conditions, such as increased temperature, desiccation, and alkaline
or acidic conditions [53]. Eggs were not detected in any sample, thereby complying with the
World Health Organization (WHO) guidelines of <1 egg g−1 total solids for feces and fecal
sludge [9]. Ascaris eggs can be expected in the fecal material, since Ascaris lumbricoides is
the most prevalent human helminth in Ethiopia [36,37]. Prevalence of Ascaris eggs in stool
samples was also described for the region where the present study was conducted [54,55].
Moreover, pretests on the toilet contents used for the present study had revealed the pres-
ence of Ascaris eggs (K. A. Werner, unpublished data). We attribute the lack of eggs to the
long duration of the composting trial, making it more likely that dead eggs were degraded.
Decreasing Ascaris egg counts with increasing composting duration was previously de-
scribed for dewatered sewage sludge compost [56,57]. The decline of viable Ascaris eggs
is dependent on different parameters. Increasing ammonia concentrations, increased pH,
and elevated temperatures promote egg inactivation in sewage sludge [58,59]. However,
temperature proved to be the most important parameter [58–60]. Hence, in the present
study, the absence of Ascaris eggs was probably mainly due to the high temperatures
reached during composting. The elimination of viable Ascaris eggs through thermophilic
composting of sewage sludge [61,62] and latrine wastes [46] was described before and is in
line with our results.

In conclusion, the present study evaluated the hygienic state of mature compost from
human excreta and cattle manure together with organic waste and teff straw, with and
without biochar, through the detection of microbiological indicator organisms. E. coli
MPNs were below the threshold for organic fertilizer without any significant differences
between the two treatments. Salmonella and Ascaris lumbricoides eggs were not detected.
The compost, therefore, fulfilled German and European regulations on human indicator
pathogens for organic fertilizer. This suggests that thermophilic composting can be an
efficient and hygienically safe treatment for human excreta; thus, it is a feasible option for
producing organic fertilizer from ecological sanitation.
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