001006815 001__ 1006815
001006815 005__ 20231116095326.0
001006815 0247_ $$2doi$$a10.1103/PhysRevResearch.5.023074
001006815 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01868
001006815 0247_ $$2WOS$$aWOS:000985637100010
001006815 037__ $$aFZJ-2023-01868
001006815 082__ $$a530
001006815 1001_ $$0P:(DE-Juel1)181090$$aBödeker, Lukas$$b0$$eCorresponding author
001006815 245__ $$aOptimal storage capacity of quantum Hopfield neural networks
001006815 260__ $$aCollege Park, MD$$bAPS$$c2023
001006815 3367_ $$2DRIVER$$aarticle
001006815 3367_ $$2DataCite$$aOutput Types/Journal article
001006815 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697432572_28783
001006815 3367_ $$2BibTeX$$aARTICLE
001006815 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006815 3367_ $$00$$2EndNote$$aJournal Article
001006815 520__ $$aQuantum neural networks form one pillar of the emergent field of quantum machine learning. Here quantum generalizations of classical networks realizing associative memories—capable of retrieving patterns, or memories, from corrupted initial states—have been proposed. It is a challenging open problem to analyze quantum associative memories with an extensive number of patterns and to determine the maximal number of patterns the quantum networks can reliably store, i.e., their storage capacity. In this work, we propose and explore a general method for evaluating the maximal storage capacity of quantum neural network models. By generalizing what is known as Gardner's approach in the classical realm, we exploit the theory of classical spin glasses for deriving the optimal storage capacity of quantum networks with quenched pattern variables. As an example, we apply our method to an open-system quantum associative memory formed of interacting spin-1/2 particles realizing coupled artificial neurons. The system undergoes a Markovian time evolution resulting from a dissipative retrieval dynamics that competes with a coherent quantum dynamics. We map out the nonequilibrium phase diagram and study the effect of temperature and Hamiltonian dynamics on the storage capacity. Our method opens an avenue for a systematic characterization of the storage capacity of quantum associative memories.
001006815 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001006815 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006815 7001_ $$0P:(DE-Juel1)185970$$aFiorelli, Eliana$$b1
001006815 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2
001006815 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.5.023074$$gVol. 5, no. 2, p. 023074$$n2$$p023074$$tPhysical review research$$v5$$x2643-1564$$y2023
001006815 8564_ $$uhttps://juser.fz-juelich.de/record/1006815/files/Invoice_INV_23_APR_010850.pdf
001006815 8564_ $$uhttps://juser.fz-juelich.de/record/1006815/files/PhysRevResearch.5.023074.pdf$$yOpenAccess
001006815 8767_ $$8INV/23/APR/010850$$92023-04-17$$a1200192522$$d2023-04-21$$eAPC$$jZahlung erfolgt$$zUSD 2625,-
001006815 909CO $$ooai:juser.fz-juelich.de:1006815$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181090$$aForschungszentrum Jülich$$b0$$kFZJ
001006815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
001006815 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001006815 9141_ $$y2023
001006815 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006815 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006815 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006815 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001006815 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006815 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
001006815 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
001006815 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
001006815 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006815 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
001006815 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
001006815 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001006815 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001006815 920__ $$lyes
001006815 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001006815 980__ $$ajournal
001006815 980__ $$aVDB
001006815 980__ $$aUNRESTRICTED
001006815 980__ $$aI:(DE-Juel1)PGI-2-20110106
001006815 980__ $$aAPC
001006815 9801_ $$aAPC
001006815 9801_ $$aFullTexts