001     1006815
005     20231116095326.0
024 7 _ |a 10.1103/PhysRevResearch.5.023074
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01868
|2 datacite_doi
024 7 _ |a WOS:000985637100010
|2 WOS
037 _ _ |a FZJ-2023-01868
082 _ _ |a 530
100 1 _ |a Bödeker, Lukas
|0 P:(DE-Juel1)181090
|b 0
|e Corresponding author
245 _ _ |a Optimal storage capacity of quantum Hopfield neural networks
260 _ _ |a College Park, MD
|c 2023
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697432572_28783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantum neural networks form one pillar of the emergent field of quantum machine learning. Here quantum generalizations of classical networks realizing associative memories—capable of retrieving patterns, or memories, from corrupted initial states—have been proposed. It is a challenging open problem to analyze quantum associative memories with an extensive number of patterns and to determine the maximal number of patterns the quantum networks can reliably store, i.e., their storage capacity. In this work, we propose and explore a general method for evaluating the maximal storage capacity of quantum neural network models. By generalizing what is known as Gardner's approach in the classical realm, we exploit the theory of classical spin glasses for deriving the optimal storage capacity of quantum networks with quenched pattern variables. As an example, we apply our method to an open-system quantum associative memory formed of interacting spin-1/2 particles realizing coupled artificial neurons. The system undergoes a Markovian time evolution resulting from a dissipative retrieval dynamics that competes with a coherent quantum dynamics. We map out the nonequilibrium phase diagram and study the effect of temperature and Hamiltonian dynamics on the storage capacity. Our method opens an avenue for a systematic characterization of the storage capacity of quantum associative memories.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fiorelli, Eliana
|0 P:(DE-Juel1)185970
|b 1
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 2
773 _ _ |a 10.1103/PhysRevResearch.5.023074
|g Vol. 5, no. 2, p. 023074
|0 PERI:(DE-600)3004165-X
|n 2
|p 023074
|t Physical review research
|v 5
|y 2023
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1006815/files/Invoice_INV_23_APR_010850.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006815/files/PhysRevResearch.5.023074.pdf
909 C O |o oai:juser.fz-juelich.de:1006815
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21