001006832 001__ 1006832
001006832 005__ 20230929112525.0
001006832 0247_ $$2doi$$a10.1016/j.scitotenv.2023.162007
001006832 0247_ $$2ISSN$$a0048-9697
001006832 0247_ $$2ISSN$$a1879-1026
001006832 0247_ $$2Handle$$a2128/34333
001006832 0247_ $$2pmid$$a36739009
001006832 0247_ $$2WOS$$aWOS:000953428000001
001006832 037__ $$aFZJ-2023-01876
001006832 082__ $$a610
001006832 1001_ $$0P:(DE-HGF)0$$aChen, H.$$b0
001006832 245__ $$aStraw amendment and nitrification inhibitor controlling N losses and immobilization in a soil cooling-warming experiment
001006832 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001006832 3367_ $$2DRIVER$$aarticle
001006832 3367_ $$2DataCite$$aOutput Types/Journal article
001006832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681987023_28105
001006832 3367_ $$2BibTeX$$aARTICLE
001006832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006832 3367_ $$00$$2EndNote$$aJournal Article
001006832 520__ $$aIt is common practice in agriculture to apply high‑carbon amendments, e.g. straw, or nitrification inhibitors (NI) to reduce soil nitrogen (N) losses. However, little is known on the combined effects of straw and NI and how seasonal soil temperature variations further affect N immobilization. We conducted a 113-day mesocosm experiment with different levels of 15N-fertilizer application (N0: control; N1: 125 kg N ha−1; N2: 250 kg N ha−1) in an agricultural soil, amended with either wheat straw, NI or a combination of both in order to investigate N retention and loss from soil after a cooling-warming phase simulating a seasonal temperature shift, i.e., 30 days cooling phase at 7 °C and 10 days warming phase at 21 °C. Subsequently, soils were planted with barley as phytometers to study 15N-transfer to a following crop.
001006832 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001006832 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006832 7001_ $$0P:(DE-HGF)0$$aRosinger, Christoph$$b1
001006832 7001_ $$0P:(DE-HGF)0$$aBlagodatsky, Sergey$$b2$$eCorresponding author
001006832 7001_ $$0P:(DE-Juel1)167469$$aReichel, Rüdiger$$b3
001006832 7001_ $$0P:(DE-HGF)0$$aLi, Bo$$b4
001006832 7001_ $$0P:(DE-HGF)0$$aKumar, Amit$$b5
001006832 7001_ $$0P:(DE-HGF)0$$aRothardt, Steffen$$b6
001006832 7001_ $$0P:(DE-HGF)0$$aLuo, Jie$$b7
001006832 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b8
001006832 7001_ $$0P:(DE-HGF)0$$aKage, Henning$$b9
001006832 7001_ $$0P:(DE-HGF)0$$aBonkowski, Michael$$b10
001006832 773__ $$0PERI:(DE-600)1498726-0$$a10.1016/j.scitotenv.2023.162007$$gVol. 870, p. 162007 -$$p162007 -$$tThe science of the total environment$$v870$$x0048-9697$$y2023
001006832 8564_ $$uhttps://juser.fz-juelich.de/record/1006832/files/Chen_etal_2023_STOTEN_post-print.pdf$$yOpenAccess
001006832 909CO $$ooai:juser.fz-juelich.de:1006832$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001006832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167469$$aForschungszentrum Jülich$$b3$$kFZJ
001006832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001006832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b8$$kFZJ
001006832 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001006832 9141_ $$y2023
001006832 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001006832 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-08
001006832 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001006832 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001006832 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006832 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger
001006832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TOTAL ENVIRON : 2022$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-19
001006832 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI TOTAL ENVIRON : 2022$$d2023-08-19
001006832 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001006832 980__ $$ajournal
001006832 980__ $$aVDB
001006832 980__ $$aUNRESTRICTED
001006832 980__ $$aI:(DE-Juel1)IBG-3-20101118
001006832 9801_ $$aFullTexts