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Abstract — The properties of a cognitive, self-propelled, and self-steering particle in the presence
of a stationary target are analyzed theoretically and by simulations. In particular, the effects of
confinement in competition with activity and steering are addressed. The pursuer is described as
an intelligent active Ornstein-Uhlenbeck particle (IAOUP), confined in a harmonic potential. For
the free pursuer, we find universal scaling regimes for the pursuer-target distance in terms of the
Péclet number and maneuverability. Steering results in a novel constant mean-distance regime,
which broadens with increasing maneuverability. Confinement strongly affects the propulsion di-
rection and leads to a scaling at large Péclet numbers similar to that in the absence of confinement,
yet with a pronounced dependence on confinement strength.
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Introduction. — Sensing of the environment and adap-
tation of motion is vital for the survival of biological enti-
ties, ranging from microbes and cells on the microscale to
animals on the macroscale [1-9], and is fundamental for
the task-oriented motion of robots [10-13]. Evolution has
provided a diverse spectrum of propulsion as well as sens-
ing mechanisms, which differ fundamentally over the wide
range of length scales. Yet, the same basic characteristics
apply on all scales, which is the combination and inter-
play of sensing, response, and adaptation of motion. The
adopted response allows for goal-oriented motion, which
encompasses, for example, cell movement in wound heal-
ing, sperm navigation toward the egg [2], and foraging
and prey-searching activities of animals. Inspired by bi-
ology, various synthetic propulsion mechanisms have been
designed, either exploiting biomimetic approaches [10] or
applying novel strategies based on chemotaxis and thermo-
taxis [3]. Moreover, various sensing and steering strategies
for colloidal systems have been implemented [14-18].

Theoretical insight into the emergent properties of sys-
tems of self-propelled particles is provided by two generic
models, the Active Brownian Particle (ABP) [3] and
the Active Ornstein-Uhlenbeck Particle (AOUP) [19-22].

(a) Contribution to the Focus Issue Statistical Physics of Self-
Propelled Colloids edited by Hartmut Léwen, Sabine Klapp and
Holger Stark.

(P)E-mail: g.gompper@fz-juelich.de (corresponding author)

Both models take into account self-propulsion, thermal or
active noise, and, if required, conservative interactions.
The major difference is their propulsion velocity, which
is inherently constant for an ABP, whereas it is deter-
mined by a stochastic Ornstein-Uhlenbeck process [23] for
an AOUP. Perception can be implemented via the cogni-
tive flocking model [8,24,25]. Tt assumes that the moving
entities navigate by using exclusively the instantaneous
“visual information”, which they receive about the posi-
tions of other entities. Such an orientational adaptive force
has been utilized in combination with ABPs, and leads to
steering with limited maneuverability toward the direction
of a sensed object [8,24-26].

An optimal steering dynamics is often hampered by en-
vironmental factors, such as geometrical obstacles, flow
fields, or other forces [27,28]. Landscapes of external
forces/fields can obviously be very complex and, hence,
strongly affect the dynamics of the migrating active entity.

In this article, we study —both analytically and by
computer simulations— the pursuit dynamics of an ac-
tive self-steering agent toward a stationary target in the
absence and presence of a confining potential. The pur-
suer is modeled as an AOUP augmented by active re-
orientation of its velocity toward the target under the
influence of noise (henceforth denoted as “intelligent Ac-
tive Ornstein-Uhlenbeck particle”, iAOUP). The simple
AOUP allows for an analytical solution of the equations of
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motion, even in the presence of a harmonic potential [20].
Moreover, it yields the same second moments as the ABP
model [20,29,30]. For the iAOUP, steering is treated sim-
ilarly to the cognitive flocking model, however, adapted
to the absence of the constraint of a constant propulsion
velocity as for ABPs [8,24]. We find that the iAOUP dy-
namics exhibits significant differences to that of an intel-
ligent Active Brownian Particle (1ABP) [8]. In particular,
the scaling relations of the mean distance from the target
and the orientation of the propulsion direction toward the
target in terms of the Péclet number Pe and maneuver-
ability Q differ significantly from those of an iABP. Even
more, a new regime emerges, where the mean distance is
independent of Pe and 2. The adaptation of the addi-
tional degree of freedom —the magnitude of the velocity
in terms of a stochastic process— and its coupling to the
radial distance and orientation of the propulsion direction
can enhance the pursuit performance. As a paradigmatic
case of the influence of a potential landscape on pursuit, we
consider the active dynamics in the presence of a confin-
ing harmonic potential. We find that confinement strongly
affects the orientation of the propulsion direction and con-
sequently the pursuer distance from the target.

Model. — The two-dimensional dynamics of an iAOUP
in the vicinity of the target located at the origin of the
reference frame is described by the overdamped Langevin
equations

(1a)
(1b)

1
r = v—;VU(r)—i—\/QDTI‘,

v = —DR’U—C|’,;|—|—U0 Drn,
r

where r(t) is the pursuer position, v(t) the propulsion
velocity, v the friction coefficient, and T'(t) and n(t) are
Gaussian and Markovian stochastic processes of zero mean
and variances (Ta ()03 (t)) = (1a(H)(#)) = dapd(t— ),
with a, 8 € {x,y}. Dy = kgT/v and Dpg are the trans-
lational and rotational diffusion coefficients (7" is the
temperature and kp Boltzmann’s constant), and vy is pro-
portional to the average propulsion velocity of an AOUP.
Confinement is described by the radial harmonic potential
U(r) = rr?/2 of strength x.

For a free iAOUP, (v?) is equal to the mean-square
propulsion velocity of an ABP, i.e., (v?) = v3. Steering is
described by the active adaptation force —C'r/|r|, similar
to the cognitive flocking model of iABPs [8,24], and ori-
ents the IAOUP propulsion velocity toward the target. It
differs in various respects from iABP steering: while the
average orientation of the propulsion direction is similar
in both cases, the time evolution of the propulsion direc-
tion is distinctly different due to the constraint of a con-
stant magnitude of the propulsion velocity for an iABP,
in contrast, the iIAOUP velocity is significantly affected
and accelerated in the direction of the target. The steer-
ing results in an effective pursuer-target attraction and
enhances its residence probability in the vicinity of the

Pe = 128.00,€ = 32.00

20

Fig. 1: (a) Geometry for the stationary target (red circle at
origin) and the pursuer (black bullet) at position r with self-
propulsion velocity v. The (bearing angle) 8 is defined as
B = 60 — ¢. (b) Rosette-like trajectory of the pursuer for
Pe = 128 and 2 = 32. The red circle in the center represents
a region of radius ry and the arrows point in the direction of
the instantaneous propulsion velocity. The active persistence
length of an AOUP (© = 0) is I, = Pe, which corresponds
to the motion along a straight line over the displayed spatial
scale. Steering causes a reorientation of the pursuer’s propul-
sion direction toward the target, and enhances its residence
probability in the vicinity of the target.

target. Which of these descriptions is more appropriate
depends on the system to be modeled. With the intro-
duction of polar coordinates (r,0), (v, ), and the angle
B = 0 — ¢ —denoted as bearing angle in the following—
between the position vector and propulsion velocity vec-
tor of the iIAOUP (fig. 1(a)), egs. (1) become (in the
Stratonovich sense [23]) (see the Supplementary Material
Supplementarymaterial.pdf (SM))

i = Pew cos 8 — kr +V/2e, - T, (2a)
0= —v—Qcosf+e, N, (2b)
. Q P 2 1
6:(—H)sinﬂ+ ieg-l"—fedyn .

v T T v (20)

Here, we measure lengths, velocities, and time in units of
rg = \/Dr/Dg, vy, and Dpg, respectively. The e; repre-
sent the different polar unit vectors. Activity is expressed
by the Péclet number Pe = vy /(ry Dg), the maneuverabil-
ity by Q = C/(vp Dg), and the strength of the harmonic
potential by k = k/(yDgr). An example of a trajectory is
presented in fig. 1(b).

Results: pursuit by a free iAOUP. — Figure 2 dis-
plays simulation results for the dependence of (cos 3), the
mean velocity (v), and the mean radial distance (r) on
the Péclet number for various values of the maneuverabil-
ity. Over certain regimes, the averages exhibit univer-
sal scaling behavior as a function of Pe Q) or Pe/), where
PeQ = C/(ryD%) is independent of the propulsion veloc-
ity and Pe/Q = v3/(ryC) is independent of Dg. Theoret-
ical insight into the IAOUP dynamics and approximations
for the averages are obtained by the analysis of the non-
linearly coupled Fokker-Planck equations corresponding to
egs. (2), as presented in the SM.
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Fig. 2: Stationary-state properties of free IAOUPs. (a) Mean bearing angle (cos ) as a function of Pe and various 2. For PeQ) > 1
and © > 1, the simulation data (bullets) are described by eq. (8) (gray line). The dotted lines represent |(cos )| = 1 —1/(4Q?).
(b) Mean propulsion velocity (v) as a function of Pe. For Pe > €, the AOUP-limit (v) = /7/2 is approached (gray dashed
line). For Pe — 0, (v) ~ €, as indicated by the dotted lines. The power-law regime of eq. (8) (gray line) is assumed for > 1
and Pe/Q < 1. (c) Mean radial distance (r) from the target as a function of Pe. For Pe/Q2 > 1, the asymptotic dependence of
eq. (7) (gray line) is assumed. The dashed lines represent eq. (7) with the velocity averages from simulations and the dotted
lines depict eq. (6). Characteristic trajectories are presented in figs. 1 and S8 of the SM. (See also the Supplementary Movies

supplM1.mov and supplM2.mov.)

Three regimes can be distinguished in fig. 2, depend-
ing on the Péclet number, the maneuverability, and their
ratio.

Small Péclet number. In the limit Pe — 0 and
Q — 0, the dynamics of a simple AOUP is obtained, which
is determined by thermal and active fluctuations, with
(cos B) = 0, (v) = /7/2, and a constant radial distribu-
tion function W(r) (see the SM). The presence of steering
leads to a competition with active propulsion.

With increasing maneuverability, but PeQ <« 1
—steering dominates over noise and active motion—,
|(cos )| assumes a Pe-independent plateau, which ap-
proaches the limiting value (cosf) = —1 for Q > 1,
i.e., the propulsion direction is oriented toward the tar-
get (fig. S8 in the SM shows trajectories). Our analytical
calculations yield the average value (SM, sect. S-II1.B)

Il (Z)
Io(z)’ ®)

with z = 2(v)Q, and Iy, I the modified Bessel functions
of the first kind. Similarly, for Q|{cos 3)| > 1, the mean
velocity approaches a Pe-independent plateau, which is
given by

|(cos B)] =

(v) = Q(cos )], (4)

and follows from the general expression (S10) of sect. S-
IIILA (SM, fig. S1) in the SM. Hence, (v) ~ Q for
[{cos B)] < 1 in agreement with the numerical data. Since
(cos B) < 0, an increasing maneuverability increases the
propulsion velocity according to eq. (2b), and (v) can ex-
ceed vy by far. However, this does not imply a more
efficient pursuit, since the iAOUP velocity is given by
7 (eq. (2a)), which is then determined by the transla-
tional noise. Taylor expansion of the Bessel functions for
large arguments (€ > 1) and insertion of eq. (4) yields
|{cos(B))| ~ 1 —1/(4Q?) for © > 1, and |(cos(B))| =~
VT Q/2 for Q — 0, in agreement with fig. 2(a). The lat-
ter corresponds to the uniform distribution of the bearing
angle in absence of steering.

The radial dynamics (eq. (2a)) is predominately dif-
fusive, because thermal noise dominates over the active
term. Our analytical calculations yield, with eq. (4), the
approximate dependence (sect. S-III.C in the SM)

2 2Q

) = yPel(cos B~ (0)2Pe"

As displayed in fig. S2 in the SM, this expression describes
the simulation data very well over a wide range of ma-
neuverability, when the values of (v) from simulations are
inserted. In the limit Q > 1, PeQ < 1, and with (v) = Q,
we obtain

()

(r) = pos (©)

in agreement with simulation results (fig. 2). Thus, the
radial distance increases with decreasing Péclet number
and maneuverability. Interestingly, the presence of the
maneuverability in eq. (6) is in strong contrast to the cor-
responding behavior of iABPs, where (r) is independent
of Q for Pe/v/Q < 1. The dependence of the propulsion
velocity on 2 qualitatively changes the radial distribution
of iIAOUPs compared to iABPs [8]. Although, the large
propulsion velocity, (v) > 1, implies an effectively larger
Péclet number, the factor Pe(v)(cos ) is still much smaller
than unity for Pe ) <« 1, and thermal noise determines the
radial distribution function (SM, figs. S6, S8).

Large Péclet number. For large Pe, two scaling
regimes appear, depending on the ratio of Pe/Q. In the
case Pe > 2 > 1, active propulsion dominates over steer-
ing and thermal noise, and the iIAOUP behaves as a simple
AOUP in the limit Pe — oco. In particular, the propulsion
direction is random (fig. 2(a)), and the bearing angle is
determined by active noise, implying a nearly uniform dis-
tribution of 5 and |{cos 8)| < 1. Similarly, the equation of
motion for v is independent of steering for Q|{cos 3)| <« 1
and the value (v) = /7/2 of a simple AOUP is assumed
(fig. 2(b)) (cf. SM, sect. S-III.C). Since (v) > 1, and with
the assumption |(cos(8))| > 0, the radial distance r is de-
termined by propulsion, and noise can be neglected. Then,
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we obtain the average radial distance (SM, sect. S-II1.C)

., (v) Pe
=20 T

with (v)/{1/v) = 1/2 (SM, eq. (S8)). This power law is
in excellent agreement with the simulation data in fig. 2.
Not surprisingly, the iAOUP exhibits the same Pe/Q de-
pendence as an iABP [8], because the random orientation
of the propulsion direction for Pe > Q> 1 decouples the
propulsion velocity from the other variables, and, on aver-
age, the IAOUP behaves similar to an iABP, yet with the
mean velocity (v) = \/7/2 and (v?) = 1. However, there
is a quantitative difference to an iABP, whose mean radial
distance is twice as large. Thus, the fluctuations in the
magnitude of the propulsion velocity lead to a closer ap-
proach of the iIAOUP to the target. The pursuer traverses
rosette-like trajectories as displayed in fig. 1(b). Due to
the highly persistent motion (Pe/Q ~ v2/C > 1), the pur-
suer overshoots the target, but steering enforces a move-
ment back toward the target.

In the case 2 > Pe > 1, the dynamics of the propulsion
velocity and bearing angle are determined predominately
by steering rather than by active propulsion. Our ana-
lytical calculations yield the approximated average values
(SM, egs. (S29), (S30))

1 Q)
e WS \/:e

These power laws are in very good agreement with
the simulation results in figs. 2(a), (b). Interestingly,
thermal noise determines the radial dynamics, because
(v)Pe(cos ) =~ —1, and the active term in eq. (2a) is of
order unity. Then, the Fokker-Planck equation (S18) in
the SM for the radial distance gives (r) ~ 2, in qualitative
agreement with simulation results in fig. 2 —the actual
value (r) is slightly smaller, because the approximate ex-
ponential distribution deviates somewhat from the proper
distribution function (fig. S6 in the SM). The intersection
of the power law (6) with (r) &~ 2 suggests that this plateau
extends over the range 1/0? < Pe/Q < 1. Thus, there is
a broad range of Péclet numbers, where a minimum aver-
age pursuer-target distance is assumed, independent of Pe
and Q. This is in contrast to iABPs, where the smallest
average distance is assumed for Pe/v/Q = 1 [8].

The freedom to adopt the propulsion velocity leads to
a novel pursuit dynamics, and can provide an advantage
of IAOUPs over iABPs, because the minimal average ap-
proach is not very sensitive to the actual values of Pe and (2
over a wide range of these values. However, the iIAOUP, on
average, cannot get arbitrarily close to the target, whereas
the iABP minimal average distance (r) ~ 1/4/Q decreases
with increasing 2. The intimate coupling of the bearing
angle and propulsion velocity allows for an efficient lo-
cal adaption of propulsion toward the target, where, at
a given Pe and an increasing ), the bearing angle is in-
creasingly randomized and the average propulsion velocity

Pe
Q b

(7)

|(cos B)| = (8)

increases. This leads to a fast exploration of the neigh-
borhood of the target. As a result, the coupling implies
an effective thermal-like radial dynamics as in a linearly
radial-outward growing potential, i.e., an attractive radial
force field (SM, fig. S8).

Results: pursuit by an iAOUP under confine-
ment. — The stationary-state properties of simple ABPs
and AOUPs confined in a harmonic potential have been
studied analytically and by simulations [20,31-38]. Most
remarkably, the radial distance of ABPs and AOUPs in-
creases linearly with increasing Pe for Pe > 1, and their
propulsion direction is preferentially oriented radially out-
ward ((cos 3) = 1) [39]. However, AOUPs can explore the
whole space around the target due to the varying propul-
sion velocity with the average (v) = /7/2 independent
of activity [20]. Figure 3(c) (inset) illustrates the depen-
dence of the average radial distance on the Péclet number,

where (SM, sect. S-1V)
T |1 Pe’
— — + _—
2\ k  2k(1+k)

with the strength %k of the harmonic potential.

Steering of an iAOUP toward the target leads to a com-
petition between confinement and pursuit. Consequently,
with increasing maneuverability, the radial averages of an
iAOUP in fig. 3 deviate substantially from those of a sim-
ple AOUP in a harmonic potential (fig. 3(c) (inset)).

For an iAOUP, the propulsion velocity and the angle 3
depend only implicitly —via 7— on the strength of the
harmonic potential. Thus, even in the presence of the
potential, its mean propulsion velocity is given by eq. (S10)
in the SM in terms of Q and (cos ), which is confirmed
by comparison with simulation results in fig. S3 (SM).

Small Péclet numbers. In the limit Pe — 0, the ra-
dial distance is decoupled from the propulsion velocity and
steering. The dynamics of r is dominated by confinement
and thermal noise, and (r) = \/7/(2k) (eq. (9)). More-
over, the propulsion velocity is independent of steering for
Q < 1, with (v) = \/7/2. Both limits are consistent with
the simulation data of fig. 3. As in the absence of confine-
ment, the average (cos ) is given by eq. (3), but with the
argument (SM, eqs. (S45), (S46))

(r) = 9)

Qr? — v2rPe

BEEEZETR -

at constant r and v. For small arguments z (0 < Q <
1, Pe = 0), the Taylor expansion of the Bessel functions
yields

QVT

<COS,B>%— = - 2]{7’

(11)
with the above averages for (r) and (v). Thus, we predict
[{cos B)| to decrease linearly with increasing , in agree-
ment with fig. 3(a). With increasing €2, the tendency of
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Fig. 3: Stationary-state properties of iAOUPs in a harmonic potential of strength k = 10. (a) Mean bearing angle (cos 8) as a
function of Pe for various Q. The dotted lines for PeQ2 < 1 represent eq. (11), and the dashed lines for PeQ2 > 1 correspond to
eq. (19) with velocities from simulations. The gray dashed and solid lines represent eq. (12) and eq. (20), respectively. (b) Mean
self-propulsion velocity (v) as a function of Pe. The dashed lines represent eq. (14) with (cos ) from simulations (cf. panel
(a)). The gray dashed and solid lines represent eq. (23b) and eq. (21), respectively. (c¢) Mean distance (r) from the target as a
function of Pe. The dashed lines are obtained from eq. (S50a) in the SM with (cos 8) from the simulations (cf. panel (a)). The
plateau value for Pe/Q < 1 is given by eq. (22) as long as > 1. The gray solid line represents eq. (23c). The inset displays
(r) as a function of Pe for < 1. The green line represents eq. (9) for a non-steering particle and the solid lines eq. (18).
Characteristic trajectories are presented in the SM, fig. S9. (See also the Supplementary Movies supplM3.mov, supplM4.mov,

supplM5.mov and supplM6.mov.)
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Fig. 4: Dependencies of the stationary-state averages on the potential strength for the combinations of Péclet number and
maneuverability: (Pe, ) = (0.002, 32) (yellow) (egs. (9) (Pe = 0), (12), (13)); (Pe, Q) = (64, 0.25) (purple) (egs. (15), (16), (18));
the pairs (Pe, Q) = (0.25,64), (2, 32), (4, 256) (black, red, green) (egs. (20), (21), (22)); and (Pe, 2) = (1024, 32) (blue) (egs. (23)).
The bullets represent simulation results and the lines the analytical approximations.

the pursuer to point toward the target increases, and the
propulsion velocity becomes () dependent. Insertion of
eq. (4) into eq. (11) yields (cos ) = —+/7/(4k) for Q > 1,
a Pe- and Q-independent plateau, qualitatively consistent
with the numerical results (fig. 3(a)). By comparison with
simulation results (fig. 4(a)), we find that the k depen-
dence is quantitatively more accurately captured by

1
<COSB> = _W,

which extends the validity of the average toward small
k values. Hence, despite 2 > 1, no perfect alignment
toward the target is reached, in contrast to an unconfined
iAOUP.

The mean propulsion velocity follows from eqs. (4), (12),

and also assumes a Pe-independent plateau, which is given
by

(12)

Q
V) = ——, 13
W =" = (13)
in good agreement with the simulation results. Hence,

even the confined pursuer shows an increase of the mean

propulsion velocity (v) ~ Q for Pe — 0 (fig. 3(b)), yet the
average is reduced by the k-dependent term.

Figure 4 displays the averages (cos 3), (v), and (r) as
a function of the potential strength k. The approxima-
tions in egs. (9) (Pe = 0), (12), and (13) capture the k
dependence very well.

In general, (cos ) increases with increasing k due to
confinement, whereas (v) and (r) decrease. Stronger con-
finement reduces the average orientation of the propul-
sion direction toward the target, and either randomizes it
(Q > Pe) or enhances the orientation away from the tar-
get (Pe > Q). This is particularly pronounced for Pe > 1
and 2 < 1, where the propulsion orientation changes from
a random value to an orientation away for the target, and
for Pe < 1 and 2 > 1, where it changes from a strong ori-
entation toward the target to a more random orientation.

Large Péclet numbers.  The properties of the pursuer
at large Péclet numbers strongly depend on the maneu-
verability Q. For 2 < 1, the averages (v), (cos ) > 0, and
(r) are close to those of simple AOUPs in the harmonic
potential, and decrease with increasing €2, as displayed in
fig. 3. Taylor expansion of the mean propulsion velocity
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eq. (S510) in the SM for Q(cosf) < 1 and (cosf) > 0
yields (eq. (S51) in the SM)

(v) = @ (1 - 4\;7?”9@05@).

This expression provides the correct limit (v) = /m/2
for Q — 0 and the propulsion velocity decreases linearly
with increasing €2, in agreement with the numerical results
displayed in fig. 3(b).

In the absence of steering, {2 = 0, and thermal noise, we
extract the dependence (eqgs. (S57), (S58) in the SM)

1
E+1’

(14)

(cos B) = (cos B)p =1 (15)
from the Fokker-Planck equation for the radial distance,
in agreement with the simulations results even at small &
values. Note that (cos ) is positive, and the propulsion
direction points away from the target, which is a conse-
quence of confinement (fig. 3). In the limit Q < 1, we
expect (cos ) to depend linearly on Q. Hence, to first
order in €2, we can replace (cos3) in eq. (14) by (cos 3)o
(eq. (15)), which gives

0= (-7 %)

again in good agreement with simulations (fig. 3(b)). In
the absence of thermal noise, the radial stationary-state
Fokker-Planck equation (S47) in the SM yields the mean
radial distance (eq. (S56) in the SM)

EEULLI P

Figure S4 in the SM shows that (r) agrees well with the
simulation results, when the averages of the simulation
data for (cos5) and (v) are used. Insertion of the k de-
pendencies of eq. (14) and (15) gives

(r) = /7 Pe <1_4\;;Qki1>7

C2k+1
with a correction for small k. The simulation results
of fig. 3 confirm the analytical predictions of eq. (16)
and (18).

As long as © < 1, steering only weakly affects the prop-
erties of the confined pursuer. Steering toward the target
enhances the orientation of the propulsion direction to-
ward the target, and consequently, implies a decreasing
mean radial distance. The manifestation of the steering
correction depends on the strength of the potential, as dis-
played in fig. 4. Evidently, stronger confinement enhances
the radial outward orientation of the propulsion direction.
Qualitatively, this behavior is in strong contrast to that in
the limit Pe — 0 and Q > 1.

In the limit Pe, > 1, and Pe/Q < 1 —here steering
dominates over propulsion—, the active term in eq. (2a)
exceeds the contribution by the potential. Hence, as in
the absence of confinement, (r) is approximately given by

(16)

(17)

(18)

eq. (7), in terms of the averages over the velocity, and
(eq. (S62) in the SM)

(cos gy — _SL0R %k

((v)Pe)? ~ (1/v)Q"

(19)

with an additional contribution by the potential. Apply-
ing the approximation (1/v) ~ 1/(v) and inserting eq. (4),
we obtain

(c0sB) = ——mm - (20)
cosf) = ————,
QOPe v/1 + 2k
and by insertion of eq. (20) into eq. (4)
Q 1
=V e ar 2y

As displayed in fig. 3(a), (b), the numerically obtained de-
pendence is well captured by this expression. In addition,
eq. (7) yields (r) = 2/v/2k + 1, a radial distance indepen-
dent of Pe and 2. This relation is in qualitative agreement
with the mean radial distance (eq. (9)) in the absence
of steering and Pe = 0 for & > 1. Guided by eq. (9),
quantitative agreement with simulations is obtained for
the choice (figs. 3(c), 4(c))

0= 3t

Steering dominates propulsion and the pursuer exhibits
the same scaling dependence of the considered averages
as a free iAOUP. All three expressions exhibit the same
Pe and € dependence as the unconfined pursuer, yet the
magnitude is significantly reduced by the respective k-
dependent term (cf. fig. 4).

In the limit Pe > ©Q > 1, propulsion dominates over
steering and thermal noise. Nevertheless, steering influ-
ences the k-dependent averages (fig. 3). Qualitatively, this
follows from the stationary-state Fokker-Planck equations
of the respective variables including the potential (SM,
sect. S-IV.D.2). We obtain similar approximate scaling
relations as in the absence of the potential,

1 2k

(22)

(cos B) = ﬁx/ﬁ’ (23a)
E
W =S T (23b)
Pe
(r) = Qi+ 1) (23¢)

however, with adjusted constants and extensions toward
smaller k to match the simulation results (fig. 3). Equa-
tion (23b) yields the correct asymptotic value for k — 0.
Remarkable is the fact that (cos ) is positive, and that
Q(cos B) (fig. S5 in the SM) and (v) assume a Pe- and
)-independent plateau.

As displayed in fig. 4, the propulsion direction is random
for k < 1, but points preferentially radially outward with
increasing k. In contrast, (v) and (r) decrease gradually
with increasing k, and (v) is smaller than /7 /2, the value
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of a simple AOUP in confinement (fig. 3(b), (c¢)). However,
eq. (23c) applies for Pe/Q > (k + 1)/vk only. Thus, the
crossover from the constant plateau (r) = \/7/(2k + 1) to
the universal increase in eq. (23c) shifts to larger Pe/Q ~
Vk (k> 1) ratios with increasing k, i.e., the range of the
minimal radial distance extends to large Pe/(.

Conclusions. — The properties of iAOUPs differ signif-
icantly from those of iABPs. The additional degree of free-
dom, v, of the propulsion velocity is strongly affected by
steering and confinement, and in turn influences the radial
distance distribution. This leads to qualitatively different
scaling relations of unconfined pursuers for their mean ra-
dial distance in the regime Pe/Q < 1,Pe > 1. In contrast,
for Pe > > 1, the same scaling behavior as for iABPs
is obtained (fig. 2). The average radial distance, (r), ex-
hibits a wide Pe- and -independent minimum-distance
regime for 2 > Pe > 1, which allows for a close approach
of the pursuer over a broad range of activities, i.e., the
closest approach is rather insensitive to Pe and ).

Confinement strongly affects the propulsion velocity, the
bearing angle, as well as the radial distance, which is re-
flected in the scaling relations. Specifically for Pe > Q >
1, the competition between propulsion, steering, and con-
finement leads to an iAOUP behavior rather similar to the
unconfined situation, but with scaling relations depending
on the strength of confinement, and a broadening of the
range of minimal approach. We hope that our theoretical
results will contribute to the design of novel self-steering
microbots.

Data availability statement: The data that support the
findings of this study are available upon reasonable request
from the authors.
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