001006852 001__ 1006852
001006852 005__ 20231027114402.0
001006852 0247_ $$2doi$$a10.1021/acsanm.3c00144
001006852 0247_ $$2Handle$$a2128/34318
001006852 0247_ $$2WOS$$aWOS:000954193900001
001006852 037__ $$aFZJ-2023-01896
001006852 041__ $$aEnglish
001006852 082__ $$a540
001006852 1001_ $$00000-0003-0794-4752$$aZhu, Yanshen$$b0
001006852 245__ $$aDevelopment of Perovskite Quantum Dots for Two-Dimensional Temperature Sensors
001006852 260__ $$aWashington, DC$$bACS Publications$$c2023
001006852 3367_ $$2DRIVER$$aarticle
001006852 3367_ $$2DataCite$$aOutput Types/Journal article
001006852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681973297_1417
001006852 3367_ $$2BibTeX$$aARTICLE
001006852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006852 3367_ $$00$$2EndNote$$aJournal Article
001006852 520__ $$aIn situ temperature measurement for closed systems is always challenging due to various physical limitations. With the aim to visualize the heat transfer phenomena in situ continuously with a longer time scale, octylamine substituted CsPbBr3 perovskite quantum dots (QDs) are synthesized, leading to its thermo-sensitity being doubled. An optical-based 2D temperature sensor based on these ligand-modified QDs is developed, targeting microreactors and other circumstances where conventional thermal sensing protocols are not applicable. The developed method has the advantages of repeatability, long lifetime, low cost, fast response time, and broader applicability since it does not require IR transparent substrates. On top of these advantages, the proposed method also provides satisfactory spatial and temporal resolution, which is typically limited by the camera’s specification rather than the materials.
001006852 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001006852 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001006852 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
001006852 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006852 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, Johan$$b1
001006852 7001_ $$0P:(DE-Juel1)173853$$aFörster, Beate$$b2
001006852 7001_ $$0P:(DE-HGF)0$$aVetrano, Maria Rosaria$$b3
001006852 7001_ $$00000-0002-2468-2312$$aKoos, Erin$$b4$$eCorresponding author
001006852 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.3c00144$$gVol. 6, no. 6, p. 4661 - 4671$$n6$$p4661 - 4671$$tACS applied nano materials$$v6$$x2574-0970$$y2023
001006852 8564_ $$uhttps://juser.fz-juelich.de/record/1006852/files/acsanm.3c00144.pdf
001006852 8564_ $$uhttps://juser.fz-juelich.de/record/1006852/files/Preprint.pdf$$yPublished on 2023-03-15. Available in OpenAccess from 2024-03-15.
001006852 909CO $$ooai:juser.fz-juelich.de:1006852$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006852 9101_ $$0I:(DE-HGF)0$$60000-0003-0794-4752$$a KU Leuven$$b0
001006852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich$$b1$$kFZJ
001006852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173853$$aForschungszentrum Jülich$$b2$$kFZJ
001006852 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a KU Leuven$$b3
001006852 9101_ $$0I:(DE-HGF)0$$60000-0002-2468-2312$$a Ku Leuven$$b4
001006852 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001006852 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001006852 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
001006852 9141_ $$y2023
001006852 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-24
001006852 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001006852 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-24
001006852 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL NANO MATER : 2022$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001006852 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL NANO MATER : 2022$$d2023-10-27
001006852 920__ $$lyes
001006852 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001006852 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
001006852 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x2
001006852 980__ $$ajournal
001006852 980__ $$aVDB
001006852 980__ $$aUNRESTRICTED
001006852 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001006852 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001006852 980__ $$aI:(DE-Juel1)IBI-4-20200312
001006852 9801_ $$aFullTexts