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Abstract 34 

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during 35 
the light reactions of photosynthesis. The past two decades have witnessed an explosion in 36 
availability of SIF data at increasingly higher spatial and temporal resolutions, sparking 37 
applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and 38 
socioeconomics). These applications must deal with complexities caused by tremendous 39 
variations in scale and the impacts of interacting and superimposing plant physiology and three-40 
dimensional vegetation structure on the emission and scattering of SIF. At present, these 41 
complexities have not been overcome. To advance future research, the two companion reviews 42 
aim to 1) develop an analytical framework for inferring terrestrial vegetation structures and 43 
function that are tied to SIF emission, 2) synthesize progress and identify challenges in SIF 44 
research via the lens of multi-sector applications, and 3) map out actionable solutions to tackle 45 
these challenges and offer our vision for research priorities over the next 5-10 years based on the 46 
proposed analytical framework. This paper is the first of the two companion reviews, and theory-47 
oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. 48 
Guided by this framework, we offer theoretical perspectives on three overarching questions: 1) 49 
The forward (mechanism) question - How are the dynamics of SIF affected by terrestrial 50 
ecosystem structure and function? 2) The inference question: What aspects of terrestrial 51 
ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and 52 
how? 3) The innovation question: What innovations are needed to realize the full potential of 53 
SIF remote sensing for real-world applications under climate change? The analytical framework 54 
elucidates that process complexity must be appreciated in inferring ecosystem structure and 55 
functions from the observed SIF emission; this framework can serve as a diagnosis and inference 56 
tool for versatile applications across diverse spatial and temporal scales. 57 

1. Introduction 58 

Land plants harvest light energy for photosynthesis with three types of pigments: 59 
chlorophyll a, chlorophyll b, and carotenoids. The light energy harvested by a free pigment is 60 
lost, partly radiatively as fluorescence and partly non-radiatively as heat; as a result, the 61 
wavelength of emitted fluorescence is longer than that of the photons originally absorbed, a 62 
phenomenon known as Stokes shift. Fluorescence is only emitted from the first excited state (S1) 63 
as an electron boosted to a higher energy is immediately relaxed to the S1 state by giving off 64 
some heat in a process known as internal conversion (Porcar-Castell et al., 2014). In addition to 65 
emitting fluorescence, the S1 state can also relax to the ground state (S0) via internal conversion, 66 
in which case heat is released, or transition to a long-lasting excited triplet state of chlorophyll 67 
via intersystem crossing. Chlorophyll a and b extracts in ether can emit up to 30% and 15%, 68 
respectively, of the absorbed energy as fluorescence (Barber et al., 1989; Latimer et al., 1956). 69 
Carotenoids also fluoresce but their quantum yield is several orders of magnitude lower than 70 
those of chlorophyll a and b, and can effectively be considered as non-fluorescent (Hashimoto et 71 
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al., 2018). In vivo, the fluorescing characteristics of chlorophyll a and b change drastically. 72 
Within the light-harvesting complexes, the excitation energy transfer from chlorophyll b to a is 73 
ultrafast (Bittner et al., 1994), leaving little chance for chlorophyll b to fluoresce; as a result, all 74 
chlorophyll fluorescence emission from plants can be considered as originating from chlorophyll 75 
a (denoted as ChlaF emission hereafter). More importantly, photochemical and non-76 
photochemical processes controlled by plant physiology compete with ChlaF emission, internal 77 
conversion, and intersystem crossing for the excitation energy at the S1 state, which can lead to 78 
an order of magnitude decrease in the quantum yield of ChlaF emission, depending on 79 
environmental conditions. Details about the physical mechanisms of ChlaF emission can be 80 
found in Papageorgiou & Govindjee (2004) and Porcar-Castell et al. (2014).  81 

ChlaF emission has no known physiological or ecological use to plants. It is not directly 82 
regulated by plants either. The energy lost in ChlaF emission is minuscule and has little impact 83 
on the energy budget of plants. However, owing to the principle of energy conservation, the 84 
dynamics of ChlaF emission are always coupled to the dynamics of photochemical and non-85 
photochemical processes that compete for the excitation energy of the S1 state (Gu et al., 2019; 86 
Porcar-Castell et al., 2014). Because plants actively regulate photochemical and non-87 
photochemical processes, the dynamics of ChlaF emission spontaneously reflect, but are not 88 
directly controlled by, these regulations. Furthermore, because these processes have different 89 
time constants, it is possible to differentiate their dynamics from the unique temporal patterns of 90 
ChlaF emission, as shown in the Kautsky effect (Kautsky & Hirsch, 1931; Stirbet & Govindjee, 91 
2011) and Pulse-Amplitude Modulated fluorometry (PAM) (Baker, 2008). 92 

ChlaF emission can be excited by either artificial light, which leads to active 93 
fluorescence, or sunlight, which leads to passive, Sun- or Solar-Induced chlorophyll 94 
Fluorescence (SIF). Both active and passive ChlaF emission have a long history of applications 95 
in plant science (Papageorgiou & Govindjee, 2004), ecosystem science (Mohammed et al., 96 
2019), and marine biology (Suggett et al., 2010). Because ChlaF emission is a spontaneous, 97 
unregulated byproduct of the light harvesting process, physiologically interpreting its dynamics 98 
is in general not straightforward, even with active ChlaF emission at the leaf scale, where the 99 
wavelength and intensity of the excitation light can be carefully manipulated.  100 

The past two decades have witnessed a rapid growth in SIF research, spurred by advances 101 
in SIF observing capabilities from various platforms. Applications of remotely sensed SIF range 102 
from ecological sciences (e.g., Magney et al., 2019; Sun et al., 2017; Porcar-Castell, et al., 2021), 103 
to agricultural (e.g., Guan et al., 2016; Guanter et al., 2014), hydrological (Gentine et al., 2019; 104 
Zhan et al., 2022), climate feedback (e.g., Mueller et al., 2016), and even socioeconomic studies 105 
(Browne et al., 2021) (Fig. 1). However, such applications face tremendous complexities arising 106 
not only from the variations in scale (in both time and space) but also from interacting and 107 
superimposing plant physiology and three-dimensional (3D) leaf and canopy structure (in both 108 
vertical and horizontal dimensions). Intermingling physiology and structure affect ChlaF 109 
emission and the subsequent scattering/reabsorption at both leaf and canopy scales (Chang et al., 110 
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2021; Magney et al., 2020; Porcar-Castell et al., 2021; Zhao et al., 2016; van Wittenberghe et al., 111 
2015), as well as the anisotropy of at-sensor SIF (depending on sun-canopy-sensor geometry, 112 
Joiner et al., 2020). At present, these complexities have not been overcome. Consequently, the 113 
“six blind men and the elephant” analogy, which was used to characterize the current 114 
understanding of terrestrial carbon cycling by Fisher et al. (2014) is also appropriate for SIF 115 
research. Previous studies may have touched different aspects of the “elephant”, resulting in 116 
mixed conclusions, for example, the linear vs nonlinear relationships between SIF and gross 117 
primary production (GPP) (e.g., Damm et al., 2015; Li, Xiao et al., 2018; Pierrat et al., 2022), the 118 
sign/strength of the relationship between quantum yields of different energy dissipation 119 
pathways (e.g., Martini et al., 2022; Miao et al., 2018), and the practical added-value of SIF in 120 
inferring the functioning of natural and agricultural systems (e.g., Cai et al., 2019; Peng et al., 121 
2020; Sloat et al., 2021; Smith et al., 2018; Wang et al., 2019). 122 

As SIF research progresses, more aspects of the “elephant” should be touched and 123 
understood. There is a critical need to connect these different aspects, and perhaps more 124 
importantly, to know what key aspects have not been touched yet, before we can predict what the 125 
whole “elephant” looks like. To advance, we must harness advances/innovations in theory and 126 
data (Fig. 1), in order to shift from correlational analyses to causal quantification and reasoning. 127 
Towards this end, we offer our perspectives on critical research priorities moving forward, from 128 
the theoretical and observational aspects in two companion reviews (i.e., this paper, and Sun et 129 
al., 2023b, respectively). Addressing these priorities will ultimately help improve predictive 130 
understanding and management of natural and agricultural ecosystems to enhance the services 131 
they offer to society (details in the companion review, Sun et al., 2023b). 132 
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 133 
Fig. 1. Harnessing theory and data to enable applications across sectors and scales. Definition of 134 
acronyms: GxExM, interactions of Genetics, Environment, and Management; ESMs, Earth 135 
System Models; IAV, interannual variability; UAV, Unmanned Aerial Vehicles; ETR, electron 136 
transport rate; GPP, Gross Primary Production. Other symbols are defined in Table S1. 137 
Icon/images in this diagram come from https://www.flaticon.com/.  138 

The objectives of the two companion reviews are to: 1) develop an analytical framework 139 
for inferring terrestrial vegetation structure and functions from remotely-sensed SIF 140 
observations, 2) synthesize progress and identify challenges in SIF research through the lens of 141 
multi-sector applications, and 3) map out actionable solutions to tackle these challenges and offer 142 
our vision for research priorities over the next 5-10 years based on the developed analytical 143 
framework. There have been multiple recent reviews of SIF science and applications. For 144 
example, Mohammed et al. (2019) provided a historical view of the progress in SIF research 145 
since the first discovery of ChlaF emission. The reviews of Pacheco-Labrador et al. (2019), 146 
Aasen et al. (2019), and Cendrero-Mateo et al. (2019) concentrated on instrumental 147 
characteristics, measurement protocols, and retrieval methods for proximal sensing of SIF. The 148 
reviews of Porcar-Castell et al. (2014) and Porcar-Castell et al. (2021) provide an introduction of 149 
mechanisms that connect SIF to photosynthesis across scales, and present a brief overview of 150 
present challenges and unfolding opportunities. They were intended as a first primer on SIF for 151 
less advanced audiences and purposefully more qualitative. Compared to these previous reviews, 152 
the major contribution of these two companion reviews is to offer a quantitative framework (i.e., 153 
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the theoretical perspective) and a data perspective that can 1) facilitate process interpretation, 2) 154 
reconcile contradictory findings reported in literature, and 3) map out concrete future steps (by 155 
guiding observational and applicational innovations) to overcome the most pressing challenges 156 
towards realizing the full potential of SIF in the broad context of global change biology 157 
applications (beyond photosynthesis). Nevertheless, the presence of these reviews not only sets 158 
the basis for the present two reviews but also considerably reduces the scope and topics that need 159 
to be covered. Throughout the two companion reviews, we emphasize that theory and 160 
observations should go hand-in-hand to enable meaningful applications. Both reviews are 161 
organized around three overarching questions: 162 

1. The forward (mechanism) question: How are the dynamics of SIF affected by 163 
terrestrial ecosystem structure and function? 164 

2. The inference question: What aspects of terrestrial ecosystem structure, function, and 165 
service can be reliably inferred from remotely sensed SIF and how? 166 

3. The innovation question: What innovations are needed to realize the full potential of 167 
SIF remote sensing for real-world applications under climate change? 168 

The forward question concerns mechanisms (i.e., ecosystem structure and functions) that control 169 
the emission, reabsorption, and scattering of SIF. It lays the foundation for the next two 170 
overarching questions. The inference question presents the retrieval of ecosystem structural and 171 
functional information from remotely-sensed SIF as an inversion problem, and discusses how 172 
such inferred knowledge can inform diverse applications in ecological, agricultural, 173 
hydrological, and socioeconomic sectors across scales in time and space. Through the 174 
presentation of this inversion problem, we identify knowledge gaps and challenges. Collectively, 175 
the answers to the forward and inference questions naturally lead to the innovation question, 176 
where we propose strategies, solutions, and priorities to fill the knowledge gaps and to overcome 177 
present challenges towards maximizing the capability of remotely-sensed SIF to monitor/predict 178 
ecosystem structure, function, and service under climate change.  179 

 The present paper is the first of the two companion reviews, and theory-oriented. In this 180 
paper, we introduce a theoretically rigorous yet practically applicable analytical framework for 181 
SIF research. This analytical framework is built upon the rapidly advancing understanding of 182 
diverse physiological/structural processes affecting ChlaF emission and its subsequent 183 
scattering/reabsorption within a canopy. Necessary assumptions/simplifications made in this 184 
conceptualization are explicitly stated for future studies to refine. Such an analytical framework 185 
is arguably the most critical research priority moving forward, as it enables explicitly elucidating 186 
the “causal” relationships/connections among different aspects of the “elephant”, and making the 187 
knowledge gaps/challenges identified for SIF research tractable and quantifiable. Note that the 188 
present review focuses on mechanistic understanding and is rather theoretical and quantitative, 189 
readers who are just starting SIF research are advised to first read earlier reviews, particularly 190 
Porcar-Castell et al. (2014), Mohammed et al. (2019), and Porcar-Castell et al. (2021).  191 
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2. The forward question: How are the dynamics of SIF affected by terrestrial ecosystem 192 
structure and function? 193 

The forward question concerns understanding and modeling the absorption of PAR 194 
(Photosynthetically Active Radiation, i.e., the excitation photons), subsequent ChlaF emission, 195 
and its scattering and reabsorption along the path to the sensor in a complex structure of leaf and 196 
canopy. Photosynthesis is typically separated into the light and carbon reactions. Issues related to 197 
the ChlaF emission can be more clearly discussed if we further separate the light reactions into 198 
the photophysical and photochemical reactions (Kamen 1963). The photophysical reactions 199 
cover the light harvesting and partitioning between photosystems, excitation energy transfer and 200 
trapping, and partitioning of excitation energy into different dissipation pathways. The 201 
photochemical reactions include the water splitting by the oxygen evolving complex, the electron 202 
transport from PSII to the cytochrome b6f complex (Cyt) to PSI to the eventual acceptor NADP+ 203 
with plastoquinone, plastocyanin, and ferredoxin as electron carriers, and the associated proton 204 
transport from stroma to lumen and ATP synthesis. The carbon reactions refer to the downstream 205 
processes in photosynthesis, i.e., the Calvin-Benson cycle, and are typically modeled by 206 
biochemical models, such as the Farquhar-von Caemmerer-Berry (FvCB) model (Farquhar et al., 207 
1980). The ChlaF emission occurs during the light reactions, more specifically during the 208 
photophysical reactions. The value of SIF as a photophysical variable lies in its potential for 209 
providing information related to photochemical and biochemical variables. 210 

2.1 Theoretical basis  211 

Theoretically, the total irradiance of ChlaF emission at wavelength  (nm, ranging from 212 
640 to 850nm) by a homogeneous canopy with total leaf area index (LAI, m2 leaf area m-2 213 
ground area), denoted as  (µmol photons m-2 ground area s-1 nm-1), without considering 214 
any scattering and reabsorption by the canopy, can be described as:  215 

216 
 (1) 217 

Here  denotes the ChlaF emission of an infinitely thin leaf layer with a thickness of  at the 218 
canopy depth  and emission wavelength , and is contributed by two components - ChlaF 219 
emission from photosystem II and I (denoted as PSII and PSI hereafter). The need to include 220 
both PSII and PSI contributions is discussed in detail in SI-1. At the leaf level, the  component 221 
arising from PSII can be represented as the product of the broadband fluorescence quantum yield 222 
of PSII ( , unitless), the total concentration ( , mol m-2 leaf area) of light-harvesting 223 
photosynthetic pigments (i.e., chlorophyll a and b, and carotenoids) associated with PSII (i.e., 224 

, where  is the fraction of associated with PSII ), the fluorescence spectral shape function 225 
 (unitless), the overall effective absorption cross section of photosynthetic pigment ( , m2 226 

mol-1, which may vary with leaf and canopy structure), and the excitation irradiance  (µmol 227 
photons m-2 leaf area s-1 nm-1), which is in turn integrated over the spectra of excitation 228 
irradiance wavelength  (nm) from  (the minimum wavelength of excitation irradiance) up 229 
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to . The excitation photons at  greater than  cannot contribute to  at , as they do not 230 
have sufficient energy for ChlaF emission at shorter wavelengths (phonon emission due to 231 
elementary excitation is ignored as it is non-significant to ChlaF emission). Note that  includes 232 
all sources - incoming solar photons (i.e., the first-order interaction), scattered solar photons, and 233 
emitted fluorescence photons, although contribution from the latter two sources to  is 234 
considerably smaller (Yang & van der Tol, 2018). The  component arising from PSI can be 235 
similarly modeled, except that the relative contribution of pigments associated with PSI to the 236 
overall effective absorption cross section is denoted as  (assuming there are no free 237 
energetically disconnected light harvesting complexes). The product of  and  gives the more 238 
commonly used absorption coefficient  at the leaf level (unitless, ~0.85 of PAR). Here  239 
and  are broadband quantities assumed to be independent of  and .  and  depend on 240 
the electronic properties of the chlorophyll a forms involved in the ChlaF emissions of PSII and 241 
PSI respectively, and their interactions with macromolecular complexes; they lead to unity once 242 
integrated over the full range of , and for simplicity, are assumed to vary only with .  243 

The leaf-level , once summed up with contributions from PSII and PSI, can be 244 
integrated over the full canopy, from the canopy top (i.e., canopy depth ) to the bottom (245 

), to obtain the true canopy-level total ChlaF emission  (i.e., prior to reabsorption 246 

or scattering within a canopy). Here the leaf to canopy integration is a highly 247 
conceptualized notation, and can take different forms with varying complexity in actual 248 
implementations, i.e., 1D homogeneous (Van der Tol et al., 2009), or 3D heterogeneous canopies 249 
(Zhao et al., 2016), or separated sunlit and shaded canopies (e.g., He et al., 2017). 250 

In practice, however,  cannot be measured directly. Instead, the canopy-leaving SIF 251 
irradiance that travels towards the sensor direction is only a portion of  that escapes from the 252 
canopy (after reabsorption and scattering). At the nadir view,  and  (µmol photons 253 
m-2 ground area s-1 nm-1), denoting the upward and downward canopy-leaving SIF irradiance at  254 
within a hemispherical 180o field of view (FOV) at the top and the bottom of a canopy 255 
respectively, can be given as: 256 

 257 

(2) 258 
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 consists of a dominant component directly from vegetation (i.e.,  escaped from the canopy 259 
in the upward direction) and a minor component due to reflection of  by soil with a reflectance 260 
of  at . The major differences of  and  from  are the introduction of the upward and 261 
downward escape probabilities, denoted by  and  (unitless), respectively, both of which vary 262 
with  and . Any SIF photon emitted by an infinitely thin layer at canopy depth  can be 263 
either absorbed 1) by this thin layer, 2) by the part of the canopy above this thin layer, 3) by the 264 
part of the canopy below this thin layer, or escape to the 4) very top or 5) very bottom of the 265 
canopy. The upward canopy escape probability  is the probability of a SIF photon emitted at a 266 
canopy depth  escaping to the very top of the canopy whereas the downward canopy escape 267 
probability  is the probability of this SIF photon escaping to the very bottom of the canopy. 268 
These two probabilities change in reverse directions with ; for example, as  increases,  269 
decreases while  increases. Note they are not the same as the probabilities of a SIF photon 270 
escaping from the interior to the surface of the same leaf at . , , and the self-absorption 271 
probability by the whole canopy  sum to unity. As the SIF signal is usually acquired from 272 
instruments above the canopy, we further remove the explicit appearance of  in Eq 2a, by 273 
inserting Eq 2b and obtain: 274 

    (2c) 275 

Eq 2 is also a conceptualized framework and includes necessary simplifications. For example, it 276 
omits multiple scattering of SIF within the canopy and by soil (as  and  only represent the 277 
first-interaction), as well as the backward scattering of SIF from the sky; it also assumes that all 278 
photons (in the PAR region) are equally efficient in exciting chlorophylls regardless of 279 
wavelength (i.e.,  and  are broadband quantities). For more technical treatments of 280 
excitation and radiative transfer of SIF, readers are referred to Pedrós et al. (2010) and Vilfan et 281 
al. (2016) for leaf-level radiative transfer model (RTM), and Van der Tol et al. (2009), Verhoef 282 
(1984), van der Tol et al. (2019) for canopy-level 1D RTM, as well as references synthesized in 283 
Table 1. Towards achieving objectives of this review, Eq 2c is sufficiently detailed and serves as 284 
the base equation for describing SIF dynamics at the canopy scale (and beyond) throughout the 285 
rest of the paper. Note the commonly used terminology “SIF remotely sensed above the canopy” 286 
corresponds to  (if the sensor has an approximately hemispherical 180o  FOV) or directional 287 

(if the sensor has a narrow FOV; here the sun-canopy-sensor geometry is denoted as  in 288 
the upward direction, e.g., for spaceborne instruments). The complete formulation of  is 289 
provided in SI-2. For simplicity, the following equations and derivations, are all based on  290 
unless otherwise specified, but  and  are mutually convertible (3.1); plant structural and 291 
functional variations as well as environmental forcings that impact  (2.2 and 2.3) also apply to 292 

. 293 
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We further expand  and  in Eq 2c as functions of non-photochemical quenching 294 
(NPQ) and redox states of PSII and PSI (full derivation in SI-3):  295 

 296 
 297 

(3) 298 

Here  and  (unitless) denote the fraction of open PSII and PSI reaction centers 299 
(characterizing their redox states respectively) under the lake model of photosynthetic unit 300 
connectivity, respectively.  is the oxidized fraction of PSI electron donor P700+, an efficient 301 
non-photochemical quencher whose intrinsic thermal dissipation capacity is denoted as  302 
(unitless).  and  (unitless) are the maximal photochemical quantum yields for 303 
PSII and PSI, respectively, and assumed to be conserved across non-stressed plants (Björkman & 304 
Demmig, 1987; G. N. Johnson et al., 1993).  (unitless) is the ratio of  (the rate constant of 305 
the constitutive or unregulated heat dissipation) to  (the rate constant of the ChlaF emission). 306 
A complete list of variable definitions and units is provided in Table S1. 307 

Eq 3 maps the complex dynamics of the emission and radiative transfer of SIF into a 308 
quantitative framework to infer ecosystem structure and functions (Fig. 2). Here ,309 
, , ,   and  can be treated as parameter constants (i.e., invariants in time and 310 
possibly across species, detailed discussion in SI-4). The remaining quantities are dynamic 311 
variables (i.e., changing over time and across species) and are affected by a myriad of interactive 312 
processes encompassing leaf and canopy structure and functions, all of which are driven by 313 
ambient environmental forcings (Fig. 2). Although Eq 3 and Fig. 2 show the complexity and 314 
challenges of interpreting remotely-sensed SIF, they reveal why SIF is useful and how to conduct 315 
ecologically meaningful applications of SIF across scales in time and space.  316 
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 317 

Fig. 2. Diagram mapping key leaf/canopy structure/functions to the full SIF equation (Eq 3). For 318 
visualization clarity, only direct effects, which act via first-order processes, are displayed (as 319 
linkages between processes and mathematical terms). Boxes marked with * or # highlight 320 
processes that can potentially be inferred from hyperspectral or Lidar measurements, 321 
respectively. 322 

2.2 How do leaf and canopy functions influence SIF? 323 

Fig. 2 reveals that , , , , and  are the direct linkages between plant functions and 324 
SIF (the right column), and known to be closely regulated by physiology in response to ambient 325 
environmental conditions. Note when italicized,  denotes the variable in equations; when 326 
non-italicized, NPQ denotes the regulated heat dissipation processes, following Porcar-Castell et 327 
al. (2014). NPQ consists of multiple complex mechanisms (e.g., energy-dependent and energy-328 
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independent/sustained NPQ) that operate at different time scales, ranging from seconds to weeks 329 
or even longer durations (Ruban, 2016; Verhoeven, 2014). The energy-dependent NPQ is 330 
controlled by changes in lumen acidity, which in turn is determined by protons from water 331 
splitting by the oxygen evolving complex and translocation from stroma to lumen as a result of 332 
photosynthetic electron transport. The energy-independent/sustained NPQ is caused by 333 
photoinhibition or photodamage of PSII and/or composition changes in photosynthetic and non-334 
photosynthetic pigment contents for photoprotection (Malnoë, 2018). These mechanisms play 335 
key roles in protecting the photosynthetic machinery by dissipating excess energy into harmless 336 
heat when the carbon reactions cannot consume all the energy supplied by the light reactions. 337 
The consequence of NPQ is to reduce (quench) ChlaF emission. Note throughout the paper, 338 

 refers to only PSII unless otherwise specified as in the example of NPQ7 (detailed 339 
discussion in SI-3).  340 

 and  indicate the redox status of PSII and PSI acceptors, respectively.  indicates 341 
the redox state of the donor of PSI, and is relevant because the oxidized donor of PSI is an 342 
efficient quencher. These variables affect and also are affected by the electron transport rates 343 
(ETR) via these two photosystems (Han, Chang, et al., 2022; Laisk et al., 2014). Changes in 344 
, , and  are considered instantaneous (i.e., faster than the energy-dependent NPQ). However, 345 
photoinhibition may also affect , leading to long-term (weekly to seasonal) changes (Porcar-346 
Castell, 2011). 347 

 is controlled by PSII/PSI stoichiometry and varies with state transition (which may 348 
vary across plant species), which refers to the adjustment of PSII and PSI relative absorption 349 
cross sections in response to excitation imbalance between PSII and PSI (Stirbet et al., 2020). 350 
Photosystem excitation imbalance can occur when environmental conditions such as light 351 
intensity, temperature, and CO2 concentration vary, causing a need to adjust the relative 352 
proportion of cyclic to linear electron transport and the ratio of ATP to NADPH to satisfy 353 
different stromal metabolisms and deliver electrons to alternative sinks (Kramer & Evans, 2011). 354 
Linear electron transport results in the production of NADPH and accumulation of protons in the 355 
lumen and therefore ATP synthesis. In contrast, cyclic electron transport contributes to proton 356 
accumulation in the lumen and ATP synthesis but not NADPH. Thus adjusting the ratio of cyclic 357 
to linear electron transport results in a different ratio of ATP to NADPH. The photosystem 358 
excitation imbalance can also occur when the two photosystems encounter different levels of 359 
photodamage or photoinhibition (Caffarri et al., 2014). Note that the excitation balance between 360 
PSII and PSI is related to, but different from, the energy supply and demand balance between the 361 
light and carbon reactions. The former is concerned about the coordination between PSII and PSI 362 
for the production of NADPH and ATP, while the latter is concerned about whether the 363 
production of NADPH and ATP is at rates that meet their demand by metabolic processes. Both 364 
balances can affect ChlaF emission. A detailed discussion on these issues is beyond the scope of 365 
this review but can be found in the literature of plant physiology (e.g., Kramer & Evans, 2011).  366 

Here it suffices to state that any environmental factors that affect photosynthesis and 367 
photorespiration are expected to affect , , , , and  and therefore SIF dynamics as 368 
Eq. 3 and Fig. 2 show. For example, the ratio of  to  is directly related to carbon 369 
reactions (Eqs S12, S15, S19, mathematical derivation in SI-5). This indicates that any 370 
environmental factor that affects carboxylation, oxygenation, stomatal conductance, mesophyll 371 
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conductance, and leaf energy balance has a potential to affect  and , and thus  (Han, 372 
Gu, et al., 2022).  373 

While the above description shows that a wide range of plant functional factors can affect 374 
 at the leaf level, all is not lost in complexities. Photochemical and non-photochemical 375 

quenching have a compensating effect on ChlaF emission and may facilitate the interpretation of 376 
SIF dynamics (but may complicate the interpretation of SIF-GPP relationships, detailed 377 
discussion Sun et al., 2023b). Under steady state in natural conditions,  and  tend to 378 
vary in opposite directions because more reduced PSII acceptors tend to be associated with 379 
higher proton gradients across the thylakoid membrane and therefore higher . This means 380 
that  is more stable than either  or  alone (Gu et al., 2019). Similarly,  and  381 
should also tend to change in opposite directions (i.e., more open PSI reaction centers mean less 382 
oxidized PSI donors), which may have implications for quantifying ChlaF emissions from PSI 383 
(detailed discussion in SI-1). 384 

The aforementioned leaf-level plant functions can vary considerably across the canopy, 385 
driven by gradients in micro-environmental conditions (e.g., light, temperature, etc) within a 386 
canopy and canopy structure (i.e., heterogeneity of foliar traits such as vertical distributions of 387 
nutrients, pigments, morphology, age, etc., details in 2.3) within a canopy. For example, it is well 388 
known that foliar nutrient contents and morphological characteristics (e.g., specific leaf area) 389 
vary systematically across the depth of the canopy. These vertical gradients in foliar traits are 390 
long-term adaptations to the background gradients in environmental conditions such as light 391 
intensity, spectral composition, and temperature that exist inside the canopy (Coble et al., 2017). 392 
The vertical gradients in the light intensity and its spectral composition can impact relative 393 
contributions of PSII and PSI to ChlaF emission. Plant canopies not only attenuate light intensity 394 
but also alter light spectrum because leaves absorb strongly in blue and red wavelengths but 395 
scatter strongly in the green and far-red regions. As a result, the within-canopy light environment 396 
is depleted in blue and red photons but enriched in green and far-red lights as compared to that in 397 
open environments (Hertel et al., 2011). PSI is more sensitive to far-red light than PSII is. 398 
Therefore as the canopy gets deeper, the light environment increasingly favors PSI (Anderson et 399 
al., 2008), which may lead to increasing contribution of PSI to . Collectively, canopy structure 400 
and spatial gradients in environmental conditions together determine the vertical variations in 401 
leaf photosynthetic rates, , , , ,  and hence .  402 

A particularly interesting but often overlooked issue is how sunflecks affect ChlaF 403 
emission. Sunflecks are bursts of light intensity inside canopies where the light environment is 404 
normally shaded. These bursts are caused by canopy gaps and swinging upper canopies by winds 405 
and can affect canopy photosynthesis significantly (Way & Pearcy, 2012). Because sunflecks are 406 
short-lived and NPQ is not instantaneous (Kromdijk et al., 2016), NPQ might not be able to rise 407 
fast enough to quench fluorescence when a sunfleck hits a leaf. As a result, sunflecks may 408 
contribute disproportionately to  via a short term (a few seconds) increase (i.e. the Kautsky 409 
effect), an issue particularly important for plant breeding towards enhancing crop productivity 410 
(Kromdijk et al., 2016).  411 
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2.3 How do leaf and canopy structure influence SIF? 412 

The internal structure and morphology of a leaf is as complex as that of a plant canopy. 413 
Although leaves typically consist of three main tissues (epidermis, mesophyll, and vascular), 414 
how these tissues are internally arranged and by what amount are determined by plant 415 
phylogenesis, locations in the canopy, foliar age before full development, and environmental 416 
conditions, with consequences on the scattering and absorption of both excitation light and 417 
emitted SIF (the left column in Fig. 2).  418 

At the sub-daily time scale, the variation in  amount is likely minor (Wickliff & 419 
Aronoff, 1962), and  dominated by changes in leaf carotenoid composition, which is involved 420 
not only in light harvesting and excitation to chlorophylls but also in the xanthophyll cycle that 421 
protects plants against photodamage under high light (Adams & Demmig-Adams, 1992). 422 
Although leaf chlorophyll content  is not expected to vary diurnally, chloroplast movement 423 
occurs at this time scale, leading to changes in excitation irradiance. At seasonal time scales, leaf 424 
chlorophyll a and b and carotenoid contents (bulk xanthophylls and zeaxanthin retention) can be 425 
highly dynamic in response to the environment or plant phenology, especially for non-evergreen 426 
species. For example, chlorophyll a and b are lower in young leaves, peaks in mature leaves, and 427 
then decreases again as leaves senesce. This leaf age-related pattern closely matches that of leaf 428 
nitrogen content and coordinates with photosynthetic capacity (Croft et al., 2017), ensuring that 429 
light harvesting and carboxylation are in balance throughout the lifetime of a leaf. Leaf 430 
chlorophyll content also varies markedly across species (e.g., evergreen vs non-evergreen), even 431 
at the same geographical/climatic regimes (Li, He, et al., 2018).  432 

The effective absorption cross sections of photosynthetic pigment  is influenced by 433 
multiple leaf/canopy structural factors. For example, photosynthetic pigments are not distributed 434 
uniformly on a plane that parallels the leaf surface, because pigments in chloroplast thylakoid 435 
membranes form concentrated interconnected complexes (i.e., pigment packaging, which refers 436 
to the spatial arrangement of pigment molecules, much like leaf clumping in a canopy) and 437 
chloroplasts themselves are not uniformly distributed laterally (i.e., chloroplast positioning), 438 
leading to the so-called sieve effect. The sieve effect reduces , which is in contrast to the detour 439 
effect, which increases photon absorption due to multiple scattering inside leaf tissues 440 
(Vogelmann, 1993). Furthermore, leaf anatomy can greatly affect the sieve and detour effects. 441 
For example, leaves of most species are dorsiventral with chloroplast-rich palisade parenchyma 442 
cells densely packed near the upper surface (the adaxial side) and the spongy mesophyll loosely 443 
placed near the lower surface (the abaxial side). The dorsiventral leaves tend to orient more or 444 
less randomly around horizontal directions. Leaves that orient more vertically tend to have more 445 
symmetrical tissue distributions (e.g., grasses, eucalyptus). Ustin & Jacquemoud (2020) provided 446 
an excellent discussion on leaf anatomy in the context of leaf-level radiative transfer. Moreover, 447 
 can vary vertically along the canopy due to changes in leaf inclination, pigment distribution, 448 

and leaf age.  449 

The escape probabilities  and  for a single leaf depend not only on leaf pigment 450 
content and composition, but also on leaf anatomy, incident light direction relative to the leaf 451 
surface, and fraction of diffuse light, and is best estimated by a leaf/canopy RTM that treats a 452 
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leaf as a 1D or 3D structure. It is important to note that, although the morphological architecture 453 
of leaves tends to remain stable once the leaf is fully developed, the arrangement and disposition 454 
of photosynthetic elements within a canopy therein can be highly dynamic, even at sub-daily 455 
scale. Chloroplast positions in mesophyll cells are controlled by chloroplast actin filaments, 456 
which are extremely sensitive to the intensity of light. At low light, these filaments can guide 457 
chloroplasts to periclinal walls to maximize exposure to light while at high light they can 458 
relocate the chloroplasts to anticlinal walls to reduce light exposure to avoid photodamage 459 
(Wada, 2013). Similarly, the arrangement of thylakoids within the chloroplast, with dynamic 460 
grana stacking/unstacking will also influence  and , and also .  461 

Overall, the presence of these factors means the leaf internal light intensity and spectral 462 
composition is heterogeneous and dynamic. Also, leaves with the same chlorophyll content may 463 
have different , , and  if their anatomy and chlorophyll packaging patterns (both at the scale 464 
of chloroplasts and thylakoids) differ. 465 

The effects of canopy structure on SIF are twofold. On the one hand, the internal 466 
distribution of PAR over branches, needles, and leaves, which controls the excitation of ChlaF 467 
emission, is determined by the penetration and scattering of light in the stand. On the other hand, 468 
the probability that the ChlaF emission, which is produced in the stand and exits the canopy in 469 
the viewing direction, is also determined by the vegetation structure and incident light direction 470 
(Van der Tol et al., 2009). Thus, the optical properties of soil, wood, and leaves in both the 471 
excitation and the emission spectral ranges affect canopy-leaving SIF. Fortunately, there is no 472 
new physics involved in the theory of SIF radiative transfer. Our understanding regarding how 473 
canopy structure affects radiative transfer of incoming solar radiation (Ross, 1981) can be 474 
equally applied to radiative transfer of SIF, although the objectives of applying this theory differ 475 
greatly between them. For solar radiative transfer, the source comes down from the top and we 476 
are typically interested in how much solar radiation is absorbed and how much is reflected. For 477 
fluorescence radiative transfer, the source is every leaf inside the canopy and much weaker, and 478 
we are typically interested in how much ChlaF emission escapes to the top of the canopy (TOC) 479 
and what it can tell us about photochemical and biochemical processes inside the canopy. 480 
Because of these differences, it is likely that fluorescence radiative transfer issues will require 481 
more accurate considerations of canopy structural factors (leaf inclination/heliotropism, spatial 482 
variations in pigment and nutrient contents, phenological stages/leaf age, leaf clumping, crown 483 
shape, crop row orientation, canopy rugosity, porosity, roughness, etc., Fig. 2) than modeling 484 
solar radiative transfer inside plant canopies. The spatial arrangement of fluorescing and non-485 
fluorescing foliage elements within a canopy may have a large influence on . For example, 486 
forests may appear ‘darker’ in terms of  than croplands (Colombo et al., 2018), not necessarily 487 
because they emit less fluorescence, but because a portion of the ChlaF emission remains 488 
‘trapped’ in the vegetation and is reabsorbed, and thus cannot be observed by the sensor. 489 
Progress in SIF RTM of different complexity is summarized in 2.4. 490 

2.4 Forward model parameterization of SIF and the associated processes in leaf/canopy 491 
function/structure  492 

Existing models that have SIF-simulating capability and progress made so far are 493 
summarized in Table 1. Future theoretical innovations needed are discussed in Section 4. 494 
Considering the complexity of interacting processes (i.e., the left and right columns in Fig. 2), 495 



 

16 

model parameterization can be distilled into a few key variables (i.e., the middle column in Fig. 496 
2). Among these variables, and are either input or state variables of a dynamic vegetation 497 
growth model; of a leaf and  can be simulated by leaf/canopy and soil RTM, respectively, or 498 
prescribed as input spectra;  is often treated as a constant, i.e., ~0.5. The remaining quantities 499 
have to be explicitly formulated, which can be categorized into two groups: variables related to 500 
leaf-level physiological functions including , , , and , and variables determined 501 
by leaf/canopy radiative transfer, including , , . All models with SIF-simulating capability 502 
have to incorporate both leaf-level physiology of ChlaF emission and leaf/canopy RTM of solar 503 
radiation and SIF, but to varying degrees of parameterization complexity, computational 504 
efficiency, and applicable scales (Table 1).  505 

Leaf-level modeling of ChlaF emission: Forward estimation of  requires the dynamic 506 
responses of , , , , and  to be known at each canopy depth, according to Eq 3. To 507 
the best of our knowledge, no models have been developed for , , and , therefore we here 508 
focus on   and .  and  are routinely measured with PAM fluorometry and 509 
can be easily parameterized as an empirical function of environmental conditions (e.g., Han, 510 
Chang, et al., 2022; Raczka et al., 2019; Serôdio & Lavaud, 2011; van der Tol et al., 2014). An 511 
advantage of such simple models is that they can be coupled directly with Eq 3 to forward-512 
calculate . Kinetic models of  based on its regulation by lumen pH have also been 513 
developed (e.g., Zaks et al., 2012). However, the latter models are probably too complex for 514 
large-scale applications of SIF as they involve many parameters that cannot be estimated directly 515 
at the leaf level. Recently there have been efforts in developing mechanistic closure solutions for 516 

 and  by modeling redox reactions along the electron transport chain (Gu et al. 2022). 517 
These closure solutions will allow  and   to be resolved in a coupled system of 518 
photophysics, photochemistry, and biochemistry of photosynthesis, as defined above.  519 

Leaf/canopy-level RTM of SIF: The widely employed leaf-level RTM includes FluoMODleaf 520 
and Fluspect (Pedrós et al., 2010; Vilfan et al., 2016, 2018). Dorsiventral (Stuckens et al., 2009) 521 
or 3D leaf RTM (Govaerts et al., 1996) exist, but these do not include physiological 522 
parameterization of ChlaF emission. At the canopy scale, FluorSAIL (Miller et al., 2005) and 523 
Soil-Canopy Observation of Photochemistry and Energy (SCOPE) (Van der Tol et al., 2009) 524 
were the first models to parameterize the absorption of PAR, as well as the ChlaF emission, 525 
reabsorption, and scattering. These models employ the concept of the Scattering of Arbitrarily 526 
Inclined Leaves (SAIL) model (Verhoef, 1984, 1985), a relatively simple stochastic model for 527 
inclined leaves in stacked layers, which further extended to SIF radiative transfer. This type of 528 
model treats the vegetation canopy as 1D horizontally homogeneous canopy, which is unable to 529 
realistically characterize heterogeneous canopies that have complex architecture and species 530 
composition. To address this issue, ray-tracing based models were developed to simulate 531 
radiative transfer of SIF within 3D canopies. Such types of models, including DART, FluorWPS, 532 
FluorFLIGHT, and FLiES (Table 1), are computationally more expensive; however, with Monte-533 
Carlo approaches, their applicability for satellite measurements is foreseeable in the near future 534 
(Wang et al. 2022). The recently developed FluorRTER model (Zeng et al., 2020), based on 535 
spectral invariant theory, could be suitable for 3D heterogeneous canopies and is 536 
computationally less demanding.  537 

Among all these models, the 1D SCOPE model is the most widely used model in the SIF 538 
research community, since it also includes full modules for calculating photosynthesis and 539 
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energy budget. It couples the leaf-level physiological module of ChlaF emission (Van der Tol et 540 
al., 2014), the leaf-level RTM Fluspect (Vilfan et al., 2016, 2018), and the canopy-level RTM 541 
SAIL (Verhoef, 1984, 1985), with subsequent updates to incorporate canopy vertical 542 
heterogeneity and to improve computation efficiency (Yang, Prikaziuk, et al., 2021). SCOPE has 543 
emerged as a standard tool (or a synthetic “virtual truth”) for process interpretation (e.g., Verrelst 544 
et al., 2015; Yang, Prikaziuk, et al., 2021) and for benchmarking other models, including both 545 
large-scale Terrestrial Biosphere Models (TBMs)/ Land Surface Models (LSMs) (e.g., Li et al., 546 
2022) and  small-scale complex 3D models (e.g., Zeng et al., 2020; Zhao et al., 2016). 547 
Furthermore, SCOPE has been taken as the standard paradigm for parameterizing leaf-level 548 
ChlaF emission and predominantly adopted (with varying actual implementations) by 549 
researchers into TBMs/LSMs (Parazoo et al., 2019). The basic strategy of SCOPE’s leaf-level 550 
ChlaF emission parameterization (Fig. S1) is to 1) compute  (the rate constant of NPQ) as an 551 
empirical function of the degree of light saturation (derived from the actual and potential ETR), 552 
which in turn 2) closes the system of equations (i.e., having the number of equations equal the 553 
number of unknowns) for calculating photochemistry, non-photochemical heat dissipation, and 554 
PSII ChlaF emission according to the principle of energy conservation (i.e., , ,  555 
form a closed equation for PSII, and knowing any two of them is sufficient to resolving the third, 556 
assuming  and  are constants). This strategy, denoted as FvCB+ , has to compute 557 
photosynthesis and actual ETR first, from FvCB, prior to derivation of , , and SIF. It is 558 
subject to uncertainties propagated from parameter uncertainties present in FvCB (Rogers et al., 559 
2017; Walker et al., 2021) and the empirical NPQ model for computing . Indeed, the wide 560 
discrepancy of simulated SIF across TBMs/LSMs and deviations from observed SIF may result 561 
at least partly from these uncertainties (Parazoo et al., 2020; Yang, van der Tol, et al., 2021), as 562 
each individual model has different actual implementation of FvCB and  formulations. 563 
Moreover, this approach essentially conflicts with the original intention of using SIF in a forward 564 
mode to curb uncertainties in current photosynthesis estimates from FvCB.  565 

The level of detail of the canopy radiative transfer representation in RTM essentially 566 
determines the computational demand and applicable scales (Table 1). For regional to global 567 
applications, the 1D SCOPE model with multi-layer treatment is practically unmanageable due 568 
to computational demand. Currently, global TBMs/LSMs usually employ the “big-leaf” strategy 569 
to simplify the canopy RTM. In these models, the SIF anisotropy cannot be explicitly modeled 570 
(Li et al., 2022), but most often treated as an empirical scaling factor derived from SCOPE 571 
ensemble simulations. Both SCOPE and the 3D family of models are capable of simulating the 572 
anisotropy impact on  by explicitly specifying the sun-canopy-sensor geometry. The major 573 
limitations of 3D models are the significant computational demands that prevent them from 574 
global simulations, as well as required input of leaf/canopy structure/functional information that 575 
are often challenging to obtain. Detailed description of the strengths and weaknesses of each 576 
model is summarized in Table 1.577 
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Table 1. Summary of existing process-based models that have SIF-simulating capability. 578 
 579 

Model Leaf-level 
parameterization of 

ChlaF emission 

Canopy RTM 
of SIF 

Sun-canopy 
-sensor 

geometry 

 Application Pros Cons C
E^ 

Ref 

Leaf RTM  Biochemic
al 

3D (horizontally) heterogeneous canopy - small scale scenes 

DART# Fluspect None Explicit modeling based on 3D ray-
tracing 

Full spectra • Natural 
landscapes 
• DART only: 
including urban 
landscapes 

• Suitable for 
small scale 
scenes with fine 
complex 
composition and 
structure 
• DART only: 
Integration with 
Lidar 

• Computationally still too 
demanding to be applied at 
large scale (>100m), but 
more efficient approaches 
may emerge. 
• Requiring accurate 
leaf/canopy 
structural/functional info as 
priori input, which are often 
challenging to obtain 
• No leaf-level ChlaF 
emission formulation 
included (except FLiES) 
• No vertical heterogeneity 
in vegetation structure 
• Not yet thoroughly 
validated with in-situ data 

 (Gastell
u-
Etchego
rry et 
al., 
2017) 

FluorWPS Fluspect As a 
function of 
PAR& 

 (Zhao et 
al., 
2016) 

FluorFLIGHT# Fluspect None  (Hernán
dez-
Clement
e et al. 
2017) 

FLiES FluoMODLeaf FvCB +   (Sakai 
et al., 
2020) 
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FluorRTER Fluspect None Explicit modeling based on SRTE • 
Computationally 
more efficient 
than the ray-
tracing approach 
• Potential for 
large-scale 
applications 

 (Zeng et 
al., 
2020) 

1D (horizontally) homogeneous canopy - point to landscape scale 

SCOPE Fluspect FvCB +  • Explicit modeling based on 
SAIL 4-stream approach 
• Multi-layer canopy (nlayer = 
10LAI)$ 

Full spectra • Process 
interpretation 
• Benchmarking 
for both 3D and 
global 
TBMs/LSMs 

• 
Computationall
y more efficient 
than 3D models 
• Vertical 
heterogeneity in 
biochemical 
and/or 
biophysical 
properties 

• Not suitable for 
horizontally heterogeneous 
canopy, e.g., crops with 
row structure, forests with 
complex architecture 
• Requiring accurate site-
specific leaf/canopy 
structural/functional info 
as priori input, which are 
often challenging to obtain 
•  formulation 
empirical and susceptible 
to uncertainties in FvCB 
• Impact of biotic stress 
not represented 

 (Van 
der Tol 
et al., 
2009, 
2014; 
van der 
Tol et 
al., 
2019; 
Yang et 
al., 
2017; 
Yang, 
Prikaziu
k, et al., 
2021) 

1D (horizontally) homogeneous canopy - global scale TBMs or LSMs 

BETHY + 
SCOPE 

Fluspect FvCB +* • Multi-layer 
canopy (nlayer = 
60) 

• Not explicitly 
represented 
• Only output 

• Single 
wavelength  
• A 

• Global 
(forward) 
simulations of 

• 
Computationally 
most efficient 

• Uncertainties in model 
structure (formulations) and 

 (Koffi 
et al., 
2015) 
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JSBACH None FvCB +  • Multi-layer 
canopy (nlayer = 
3) 
• Assuming a 
constant 
exponential 
attenuation factor 
of ChlaF emission, 
calibrated to 
SCOPE 
simulations 

nadir and/or 
hemispherically
-integrated 
TOC SIF 
(calibrated to 
SCOPE 
ensemble 
simulations) 
• BETHY only: 
No info 
provided 
• JSBACH 
only: No SIF 
magnitude, as 
no wavelength 
separation 

conversion 
factor 
calibrated to 
SCOPE 
ensemble 
simulations 
• BETHY 
only: No info 
provided on 
wavelength 
adjustment 

SIF for 
comparison with 
in-situ and/or 
satellite SIF 
retrievals 
• Data 
assimilation by 
ingesting SIF 
measurements to 
constrain 
parameters 
and/or variables 
related to GPP 
simulations 

for large-scale 
simulations 
• Vertical 
heterogeneity in 
biochemical/bio
physical 
properties (for 
some models) 

parameters of FvCB, , 
SIF parameterizations for 
global PFTs 
• Simplified SIF leaf-to-
canopy RTM formulations 
• Depend on external 
simulations of SCOPE for 
deriving simple conversion 
factors or parameterizations 
to account for escape 
probability at certain 
viewing angle(s) and 
specific wavelength 

 (Thum 
et al., 
2017) 

SiB* None FvCB +* • One "big-leaf" 
model NOT 
separating sunlit 
and shaded 
portions 
• Assuming a 
factor accounting 
for leaf to canopy 
scaling calibrated 
to SCOPE 
simulations 

 (Haynes 
et al., 
2020) 

ORCHIDEE None • A simplified 
empirical model 
calibrated to 
SCOPE ensemble 
simulations 

 (Bacour 
et al., 
2019) 

BEPS None • Two "big-leaf" 
model accounting 
for sunlit and 
shaded portions 
• Exponential 

 (Cui et 
al., 
2020; 
Qiu et 
al., 
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attenuation factor 
of ChlaF emission 
as a function of 
LAI and clumping 
index 
• Scattering factor 
of ChlaF emission 
as a function of 
LAI 

2019) 

CLM* None • Two "big-leaf" 
model accounting 
for sunlit and 
shaded portions 
• CLM4: 
Assuming a factor 
accounting for leaf 
to canopy scaling 
calibrated to 
SCOPE 
simulations 
• CLM5: Separate 
calculation of 
canopy-level 
escape probability 
for sunlit and 
shaded portions 
according to Zeng 
et al. (2019) 

• Empirically 
represented 
• Only output 
nadir and/or 
hemispherically
-integrated 
TOC SIF 

 (Lee et 
al., 
2015; 
Raczka 
et al., 
2019; 
Li et al., 
2022) 

&Based on Rosema et al. (1998) 580 
#RAdiation transfer Model Intercomparison (RAMI) participating model 581 
*Subjective to version differences and/or formulation variants 582 
^CE denotes computational efficiency; models are broadly sorted in increasing order of CE, color-coded in a warm (low CE) to cold 583 
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(high CE) spectrum. 584 
$nlayer denotes number of canopy layers585 
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3. The inference question: What aspects of terrestrial ecosystem structure, function, and 586 
service can be reliably inferred from remotely sensed SIF and how? 587 

The relevance of SIF for inferring photosynthesis and the related ecosystem structural and 588 
functional information rests on the fact that ChlaF emission is directly coupled to the actual 589 
linear ETR from PSII to PSI (Gu et al., 2019). However, the canopy-leaving  (or more 590 
broadly ) needs to be converted to , prior to any meaningful inference of 591 
ecosystem structure or function. In the following, we first summarize current approaches that 592 
infer  from  or  (3.1), and then present the full equations to estimate the 593 
actual ETR and GPP utilizing ChlaF emission as input (3.2). Finally, we develop a “toy” model 594 
as an analytical framework (3.3), which not only offers direct mechanistic insights on 595 
interpreting the relationship between  and GPP at varying spatiotemporal scales or under 596 
different environmental conditions, but also enables a practical solution to compute 597 
regional/global GPP by taking remotely-sensed  as input. Note in this paper,  and 598 

 denote canopy-leaving SIF at TOC, which are assumed to be identical to the at-sensor SIF 599 
signal, i.e., negligible atmospheric absorption/scattering from the atmospheric column between 600 
TOC and the observing instrument, which is a reasonable assumption for solar Fraunhofer-line 601 
based SIF retrievals (Chang et al., 2020; Frankenberg et al., 2012). 602 

3.1 Inferring  from  or  603 

There are two common approaches to infer . The first attempts to estimate the 604 

fluorescence escape probability  escaping out of TOC (viewed from nadir), 605 
from the measured TOC reflectance . More commonly for spaceborne measurements, the 606 
directional TOC SIF radiance (and also the directional TOC reflectance) at sun-canopy-sensor 607 
geometry  is acquired, i.e., ; therefore the fluorescence escape probability is -608 

dependent, i.e., . The term ‘escape probability’ originated from 609 
recollision theory (Stenberg 2007; Knyazikhin et al., 2011), and appears to exhibit a red edge 610 
pattern very similar to reflectance (Fig. 3). Therefore, this approach takes advantage of the 611 
similarity of photon interception and scattering behaviors between ChlaF emission and excitation 612 
irradiance (i.e., for paths after first interaction with leaves and inducing ChlaF emission) within a 613 
canopy (Fig. 3; Yang and van der Tol 2018). As directional TOC reflectance is widely available, 614 
facilitating this type of approach is a practical way to approximate  or . 615 
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 616 

Fig. 3. Similarity between TOC fluorescence escape probability  and reflectance. (a) A 617 
diagram illustrating the radiative transfer paths of incident solar radiation and SIF within a 618 
canopy, adopted from Yang & van der Tol (2018). Definition of symbols is in Table S1. Orange, 619 
black, and red arrows represent incoming solar radiation, reflected/transmitted solar radiation, 620 
reflected/transmitted fluorescence, respectively.  and  denote leaf reflectance and transmittance 621 
respectively;  and  denote the relative partitioning of ChlaF emission in the backward and 622 
forward direction respectively;  is the canopy interceptance. (b)  and reflectance   as a 623 
function of wavelength simulated with SCOPE2.1 for a homogeneous C3 crop canopy viewed 624 
from nadir (detailed model parameter setup in Table S2).  625 

Yang & van der Tol (2018) demonstrated that irrespective of the complexity of radiative 626 
transfer, the relationship between  and  of a canopy over a black soil (i.e., 627 

) can be expressed as:  628 

  (4) 629 

here  is the canopy interceptance (depending on canopy gap fraction, unitless), and  is leaf 630 
scattering coefficients (i.e., the sum of leaf reflectance  and transmittance , unitless). Eq 4 631 
indicates that canopy reflectance  can serve as a practical solution to ‘correct’  632 
for structure related effects that may otherwise overshadow those of quenching mechanisms of 633 
ChlaF emission. Eq 4 is the theoretical foundation for following derivations and implementations 634 
of varying forms, i.e., Eqs 5a-h summarized in Table 2. However, there are two caveats in Eq 4. 635 
First,  and  may not be accurately known as a priori; second,  is assumed as zero, which in 636 
reality may not be the case and can contribute to  but not to ChlaF emission.  637 

To address the first caveat, Yang et al. (2020) developed the Fluorescence Correction 638 
Vegetation Index (FCVI) (Eq 5b), the product of the fraction of absorbed photosynthetically 639 
active radiation   and , based on the radiative transfer theory. Here  is 640 
the broadband visible directional reflectance over the PAR spectral range, and  is 641 
directional reflectance over the range of the NIR plateau (~750-900nm). FVCI quantifies the 642 
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combined effect of PAR absorption and SIF scattering, therefore accounting for the aggregated 643 
effect of leaf/canopy structure on SIF.  644 

To address the second caveat, Zeng et al. (2019) proposed to use NDVI  to differentiate 645 
 of pure vegetation from soil, which does not contribute to ChlaF emission but 646 

impacts , i.e., Eq 5f.  647 

Note Eqs 4-5 are only valid when the sun-canopy-sensor geometries are identical 648 
between far-red SIF and reflectance (i.e., measured at the same time from the same platform in 649 
practice). Furthermore, Eq 4 (and therefore Eqs 5a-d, f-g) is valid only for far-red SIF but not for 650 
red SIF, likely due to the asymmetry in the relative partitioning of scattering over two sides of a 651 
leaf (i.e.,  vs ) between incident solar radiation and ChlaF emission in the red region (Yang & 652 
van der Tol, 2018) and the significantly more re-absorption of ChlaF emission at red within a 653 
canopy. To remedy this issue, Liu et al. (2020) extends the  formulation to red SIF (Eq. 5e) 654 
using empirical approximation of  to mitigate soil contamination. Strictly speaking,  655 
and  should be at the same wavelength , which in practice, are unfortunately not available 656 
if they are from different spaceborne instruments. Therefore, there is often a spectral mismatch 657 
between the far-red SIF and reflectance at NIR (e.g., Zeng et al., 2019). Other variants of 658 

 formulations and their corresponding caveats are summarized in Table 2. 659 
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Table 2. Summary of approaches developed to estimate  and concurrently to correct the BRDF (Bidirectional Reflectance 660 
Distribution Function) effect of . 661 

Approach  Pros Cons Ref SIF data Reflectance 
data  

Simple index based on reflectance and spectral invariant theory (analytical solution) 

                         (4) far-red C1; D1 T1, T2, T3; P1, P2, P3 
Yang and 
van der 
Tol, 2018 

Synthetic Synthetic 

                      (5a) far-red C1; D3, D4, D5; Mitigating T1, P1, P2 T2, T3; P3; S8 
Zhang et 
al., 2019 TROPOMI TROPOMI 

     (5b) far-red C1; D1, D2, D4 T1, T2, T3; P3; S1, S3 Yang et al. 
2020 

In-situ In-situ 

(5c) far-red 
D1, D2, D3, D4, D5; Mitigating T1, 
P1, P2 T1, T2, T3; P3; S2 

Zhang et 
al., 2020  

In-situ; 
OCO-2 

In-situ; OCO-
2 

 (5d) far-red D1, D2, D4, D5; Mitigating T1, P1, P2 T1, T2, T3; P3; S1, S2 
Liu et 
al.2020 In-situ In-situ 

        (5e) red D1, D2, D4, D5; Mitigating T1, P1, P2 T2, T3; P3; S1, S2, S6 
Liu et al., 
2020  In-situ In-situ 
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      (5f) 

far-red D1, D2, D4, D5; Mitigating T1 T2, T3; P1, P2, P3; S1, S2 
Zeng et al., 
2019 

Synthetic; 
TROPOMI 

Synthetic; 
MODIS 

         (5g) 
far-red D2, D4, D5; Mitigating P1 T2, T3; P1, P2, P3; S2, S3, 

S4, S5 

Hao, Asrar, 
et al.2021; 
Hao, Zeng, 
et al., 2021; 
Hao et al., 
2022 

In-situ; 
OCO-2; 
TROPOMI 

In-situ; 
MODIS 

                 (5h) 
red D2, D4, D5; Mitigating P1 T2, T3; P1, P2, P3; S2, S3, 

S4, S5, S6 

Hao, Zeng, 
et al., 2021; 
Hao et al., 
2022  

In-situ In-situ 

Kernel-driven approach  red, far-
red D4, D5 S3, S7 

Hao, Zeng, 
et al., 2021; 
Hao et al., 
2022 

In-situ; 
TROPOMI 

In-situ; 
MODIS 

Explicit RTM model (numerical solution) 

A geometric-optical bidirectional model (simplified) 
accounting for separation of sunlit and shaded portions far-red 

• Theoretically rigorous derivation 
based on the geometric-optical 
bidirectional reflectance approach 
• Considering clumping index 
• Computationally affordable for 
global applications 

• Assumption of constant 
sunlit vs shaded fractions 
• Theoretically valid for far-
red only 

He et al., 
2017 GOME-2 NA 

Data-driven approach 
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Random forest with directional reflectances from red, 
red-edge, and far-red as input 

red, far-
red 

• Computationally efficient 
• Training data from synthetic data 
generated from model simulations, 
relaxing the dependance on extensive 
observational data for training 
• Not requiring wavelength consistency 
between reflectance and SIF 

• The global scalability is 
limited, as the machine 
learning type approach is 
known for weak capability 
for extrapolation 
• Uncertainties in training 
data propagated from 
uncertainties in 
structural/parameter models 
that are used for generating 
synthetic data 

Liu et al., 
2018 

In-situ; 
HyPlant 

In-situ; 
HyPlant 

Note:  and  denote far-red and red fluorescence wavelengths respectively;  means integrated over the PAR spectral range; 662 
 denotes bidirectional reflectance factor. 663 

● C1: Theoretically rigorous derivation based on spectral invariant RTM theory 664 
● T1: Theoretically valid for black soil background only 665 
● T2: Theoretically valid for far-red only, as the required assumption of the same partitioning between transmittance (forward) vs 666 

reflectance (backward) of PAR and forward vs backward ChlaF emission only valid at far-red 667 
● T3: ChlaF emission excited by scattered PAR omitted in the theoretical derivation 668 
● D1: Computational simplicity and efficiency 669 
● D2: Required input widely available from existing spaceborne measurements 670 
● D3: Considering impact of clumping index on canopy interceptance 671 
● D4: Applicable to ecosystems with moderate to dense vegetation coverage 672 
● D5: Possibly applicable to ecosystems with sparse vegetation coverage 673 
● P1: Requiring identical sun-canopy-sensor geometry between far-red SIF and reflectance, currently challenging to obtain from spaceborne 674 

measurements from different platform/instruments 675 
● P2: Requiring identical wavelength between far-red SIF and reflectance, which can be challenging for spaceborne measurements from 676 

different platform/instruments 677 
● P3: No direct measurements of interceptance, which requires approximation 678 
● S1: Approximation of  (  from chlorophyll only) as  679 
● S2: NDVI taken as a proxy of pure vegetation signal, excluding the soil effect on NIR reflectance, while NDVI not a perfect measure for 680 

"pure" vegetation 681 
● S3: No estimation of  682 
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● S4: Only view angle, not solar angle 683 
● S5: Requiring kernel-based BRDF model 684 
● S6: Theoretical derivation involving many empirical approximation 685 
● S7: Requiring multi-angle SIF measurements 686 
● S8: Spaceborne reflected radiance not atmospherically corrected, affecting BRF calculation687 
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The second type of approach relies on RTMs (Table 1) to numerically solve  (e.g., Celesti et 688 
al., 2018; Yang et al., 2019), often with reflectance spectra as input to anchor the leaf/canopy 689 
structural parameters/variables that are required to invert RTMs. This approach may be feasible 690 
at the field or landscape scale but can be computationally formidable at regional and global 691 
scales. The FluorRTER RTM, with promising computational efficiency, offers potential to 692 
correct  of 3D canopies for airborne and satellite retrievals. 693 

 Other approaches to estimate  include data-driven (Liu, Liu et al., 2018) and kernel-694 
driven approaches, which can effectively normalize  into hotspot or nadir viewing directions 695 
if multi-angular SIF measurements are available (Hao, Asrar, et al., 2021; Hao et al., 2022; Hao, 696 
Zeng, et al., 2021). 697 

3.2 The full equation: Deriving the canopy-level ETR and GPP 698 

The total ChlaF emission consists of contributions from both PSII and PSI. Since the PSII 699 
emission dominates, and it can be easily probed with PAM fluorometry, Gu et al. (2019) related 700 
linear ETR and GPP to the PSII component of the total ChlaF emission. Further, as 701 
photochemistry, non-photochemical heat dissipation, and PSII ChlaF emission form a closed 702 
system according to the principle of energy conservation, the relationship between the actual 703 
linear ETR ( , µmol m-2 leaf area s-1) and the PSII ChlaF emission can be expressed in terms of 704 
either redox states of PSII ( ) or . Note  refers to the actual ETR instead of the 705 
potential ETR ( ) commonly used in the FvCB photosynthesis model (Farquhar et al., 1980). 706 
We derive the canopy-level total actual ETR (denoted as , µmol m-2 ground area s-1) based on 707 

 (Gu et al., 2019; Eq 21 therein).  708 
 709 

  710 
(6) 711 

Here  and  denote the minimum and maximum wavelengths of ChlaF emission.  712 

Further, GPP can be calculated by assuming: (1) all electrons from PSII are consumed 713 
either in carboxylation (CO2 assimilation) or oxygenation (photorespiration), and alternative 714 
electron sinks such as nitrate reduction and Mehler reaction are negligibly small (Alric & 715 
Johnson, 2017); and (2) the light-carbon reactions are in perfect balance (Gu et al., 2019; Han, 716 
Chang, et al., 2022). These two assumptions are fairly accurate under normal conditions but may 717 
be violated when plants are under stress (Tcherkez & Limami, 2019). For example, if drought 718 
and heat stresses force stomatal closure when sunlight intensity is still high, a proportion of the 719 
liner electrons may flow to oxygen to form reactive oxygen species, rather than to NADP+ for 720 
carbon assimilation, which may break these two assumptions. To calculate GPP, one must 721 
further decide whether the carboxylation is limited by the supply of reduced power NADPH or 722 
energy currency ATP. In typical applications of FvCB, NADPH is assumed to be limiting, which 723 
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is adopted here to calculate the GPP of a canopy (denoted as , µmol CO2 m-2 ground area 724 
s-1): 725 
 726 

 727 
   728 

(7) 729 

Here Cc (Pa) is the CO2 partial pressure in the stroma of chloroplast,  (Pa) is the CO2 730 
compensation point in the absence of day respiration, and  (unitless) is the fraction of total 731 
electron transport of mesophyll and bundle sheath allocated to mesophyll (for C4 plants only).  732 
Eqs 6-7 are the full equations to derive canopy-level ETR and GPP from ChlaF emission. Here 733 

 (or NPQ) must be modeled independently in order to close the system, which remains as a 734 
major theoretical gap in current literature (2.4 and 4.1).  735 

3.3 A toy model: Analytical solutions of canopy-level ETR and GPP from  736 

Comparison of Eqs 6-7 with 1-3 reveals that it is not straightforward to directly apply either 737 
 or  or even  to estimate  or , as Eqs 6-7 require information 738 

on vertical distribution of ChlaF emission that are determined by variations in canopy 739 
structure/functions (Fig. 2). Therefore it is not conducive to directly employ Eqs 6-7 to compute 740 

 or  analytically. To enable an analytical solution, we develop a toy model by 741 
simplifying Eq 3. Note here we utilize  for demonstration; a corresponding formulation 742 
based on  can be similarly derived (or converting  to  as a prior step). 743 
The major assumption to facilitate this simplification is that attenuation of emitted SIF and 744 
incoming PAR inside a canopy can be characterized with Beer's law (a commonly used strategy 745 
in global TBMs/LSMs). The toy model reads below (detailed derivation and other assumptions 746 
involved are provided in SI-6-8):  747 

748 
(8) 749 
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 750 

(9) 751 

 752 

 753 

             (10) 754 

Here  and  denote the upward/downward escape probability of ChlaF emission for an 755 
infinitesimally thin leaf layer at TOC/BOC respectively; and  are empirical parameters for 756 
calculating  as a function of ;   and  denote the canopy-level fluorescence 757 
quantum yield of PSII and PSI respectively under steady state;   denotes the mean 758 
photosynthetic pigment content of the canopy;   and  are the canopy-mean broadband  and  759 
(i.e., integrated over the PAR spectral range 400 to 700nm) respectively. 760 

Eq 8 represents a minimalistic model at the canopy level, which reveals that  is 761 
affected by three groups of factors: leaf/canopy structure, the quantum yield of ChlaF emission 762 
(averaged between PSII and PSI), and light harvesting. The light harvested is the product of , , 763 
and incident light intensity at TOC, i.e., . The impact of leaf/canopy functions on ChlaF 764 
emission is represented by their impact on the mean quantum yield of ChlaF emission of a 765 
canopy. The canopy structure factor accounts for variations in the spatial display of 766 
photosynthetic pigments (e.g., leaf orientation, vertical layering, pigment packaging, canopy 767 
rugosity, or porosity, etc, Fig. 2) that affects the light extinction coefficients of both ChlaF 768 
emission (denoted as ) and intercepted irradiance for excitation (denoted as ). This toy 769 
model illustrates the joint control of leaf/canopy structure and functions as well as light 770 
harvesting on . For example, two canopies with the same  can differ in  if they 771 
differ in canopy/leaf structure or the mean quantum yield of ChlaF emission. This toy model is 772 
applicable for guiding  process diagnosis and interpretation or knowledge inference on what 773 
structural and functional information can be inferred from  (Sun et al., 2023b). We note 774 
that Eq 8 can be applied to a leaf by setting  and  (derivation in SI-6). Eqs 8 and 775 
S25 show that, even with considerable simplifications, additional inputs or constraints are always 776 
needed to reduce the degree of freedom to infer any structural or functional information from the 777 
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observed  at the canopy or even the leaf level. What additional inputs are available 778 
determine how  should be used and the level of complexity of such usage.  779 

 Eqs 9-10 present the analytical solution of canopy-level ETR and GPP utilizing at-sensor 780 
 as input, facilitating a forward calculation of these quantities that are not subject to 781 

existing uncertainties in the full FvCB model and/or  formulations (i.e., the NPQ-based 782 
strategy). Parameters in these equations can be estimated from vertically distributed 783 
measurements of light attenuation, leaf PAM fluorometry and gas exchange. Moreover, Eqs 9-10 784 
breaks  and  into components of structure, a ChlaF weighting factor, and CO2 785 
diffusion (e- use efficiency, for C3 only). Note that the toy model explicitly models  assuming 786 
it complies with Beer’s law, and therefore does not have to separately correct  before-hand, 787 
such as in 3.1. The system of Eqs 8-10 directly reveals what variables/parameters impact SIF and 788 
its relationship with GPP, in a more explicit fashion than the conventional light use efficiency 789 
(LUE) model. These analytical equations (along with those in SI) can be used to guide 790 
interpretation of SIF-GPP relationships, applications of SIF to different sectors under climate 791 
change, and innovations in observational instrumentation/setup (details in the companion paper, 792 
Sun et al., 2023b).  793 

On the other hand, Eq 10 also suggests modeling GPP from at-sensor SIF is complex. 794 
Although the community shares the hope of utilizing remotely-sensed SIF to radically reduce the 795 
long-standing uncertainty in GPP estimates, we must acknowledge (from Eq 10): 1) SIF is not 796 
GPP, and 2) SIF is not a panacea to fix all issues (e.g., LAI, , etc) that remain major 797 
contributors to the uncertainty in GPP estimation. First, the whole SIF dynamics is nonlinear 798 
(Eqs 3, 6, 7) which includes convoluted multiplications, integration, etc; hence integrated 799 
information in SIF (the direct observable) does not equal the integrated information in GPP (our 800 
target variable). Second, SIF is influenced by many factors that are shared with GPP (i.e., LAI, 801 
leaf angle, , environmental forcings), so it can to some extent integrate over the dynamic 802 
physiological complexities of photosynthesis, and may offer a shortcut to model GPP bypassing 803 
some of the uncertainties in individual factors (e.g.,  disappears in Eq. 10, Han, Chang, et 804 
al., 2022). However, LAI and clumping effect are still required in modeling GPP even though 805 
their impact is already (partly) incorporated by . 806 

4. Innovations: What innovations are needed to realize the full potential of SIF remote 807 
sensing for real-world applications under climate change? 808 

Moving forward, to jigsaw individual “puzzle” pieces (i.e., the six blind men and the elephant) 809 
into holistic and insightful mosaics (via synthesis and synergy) towards the ultimate goal of 810 
depicting a full picture of the elephant, innovations are required in both theory development and 811 
observing technology (Sun et al., 2023b). Innovations in these aspects should fill existing 812 
theoretical and data gaps that currently challenge applications (summarized in Fig. 4). Below we 813 
summarize existing theoretical gaps (4.1, Fig 4), followed with our insights on potential 814 
innovative solutions to address them (4.2-4.3) guided by the analytical framework developed 815 
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above. Data gaps and corresponding innovative solutions are discussed in the companion data-816 
perspective paper (Sun et al., 2023b).  817 
 818 

 819 
Fig. 4. Existing theoretical and data gaps through the lens of applications (Sun et al., 2023b), and 820 
potential solutions moving forward. This paper focuses on the theoretical side (the right columns 821 
highlighted in dark color) of this diagram. NEE: net ecosystem exchange.  822 

4.1 Theoretical gaps 823 

Our derivations of the equations governing SIF dynamics (Eq 3) and relationships with key 824 
ecophysiological variables (Eqs 6-10) (e.g., photosynthetic pigment, ETR, and GPP) point to 825 
where theoretical gaps exist and provide guidance on connecting individual dots into a complete 826 
picture across scales (Fig. 4). These gaps are not independent and filling them requires advances 827 
in broader areas of photosynthesis and ecological research.  828 

The redox states of photosystems (i.e., , , ), as well regulated and unregulated 829 
heat dissipations (i.e.,  and ), play central roles in the dynamics of SIF and its 830 
relationships with pigment content, ETR, and GPP. It is difficult to utilize the full potential of 831 
SIF for ecophysiological applications without thoroughly understanding and modeling how 832 
redox state and NPQ processes affect the ChlaF emission (Eq 3). Either the redox states or NPQ 833 
must be known in order to utilize SIF to predict electron transport or GPP (Gu et al., 2019). The 834 
redox states and magnitudes of varoius heat dissipation pathways are an outcome of complex 835 
feedforward and feedback processes of photophysics, photochemistry, and biochemistry of 836 
photosynthesis. , , , and  are sensitive to environmental stress and affected by 837 
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photodamage and photoinhibition, and change with phenology. The variations of  and  838 
have often been studied by decomposing them into a sustainable (photo-inhibited) component 839 
and a reversible component (Porcar-Castell, 2011; Raczka et al., 2019; Tietz et al., 2017). The 840 
presence of photo-inhibited components increases , and decreases  and . 841 
Although the redox state and NPQ of PSII are routinely measured by PAM fluorometry and 842 
studied extensively, we currently still lack broadly applicable and mechanistically sound models 843 
to represent their dynamics in natural envionments. In particular, compared with our knowledge 844 
about the control of PSII redox states and NPQ, we currently know little about the control of PSI 845 
redox states and heat dissipation processes due to lack of measurements.  846 

Nutrient content: Typically, the impact of nutrient contents on photosynthesis is 847 
investigated in terms of their relationship with photosynthetic capacity parameters such as the 848 
maximal carboxylation rate  and maximal potential electron transport rate . For the 849 
applications of SIF, it is important to understand the mechanistic basis of the impact of nutrient 850 
availability on these photosynthetic capacity parameters. This is particularly important for  851 
because electron transport (photochemistry) directly competes with SIF emission for energy 852 
partitioning. While the mechanism for the dependence of  on nutrient content is fairly well 853 
understood (e.g., Rubisco abundance depends on leaf nitrogen content LNC), how nutrient 854 
content mechanistically affects  is not clear, even though  and  exhibits empirical 855 
linear relationships (Wullschleger, S. D. 1993; Kattge and Knorr 2007). The “coordination 856 
theory” hypothesizes that plants can optimize LNC to balance Rubisco- and RuBP regeneration-857 
limited carboxylation rates (Chen et al., 1993; Wang, Prentice, Keenan, et al., 2017), alluding the 858 
linkage between LNC and . From the light reaction side, It has been reported that under the 859 
same environmental conditions, leaves with different nutrient contents may have different  860 
(Cheng, 2003) and . Also, foliar chlorophyll content depends on nutrient contents (Croft et 861 
al., 2017). It is likely that the foliar abundances of PSII and PSI and the stoichiometry between 862 
them also depend on nutrient availability; however, studies addressing this are rare. 863 

State transition refers to the migration of mobile light-harvesting complexes II (LHCIIs) 864 
and thus the redistribution/rebalancing of energy absorption and excitation between PSII and PSI 865 
(for a review, see Minagawa (2011)). This process results in a dynamic adjustment of . The 866 
energy balance between PSII and PSI is essential for the photosynthetic machinery to operate 867 
safely in fluctuating environments because these two types of photosystems are connected in 868 
series and the energy level of electrons transferred from PSII to PSI needs to be elevated by 869 
photons absorbed by the light harvesting complex of PSI. Thus, any imbalance between them can 870 
disrupt electron flow from PSII to PSI and to the eventual electron acceptor NADP+. When light 871 
regimes favor PSI, mobile LHCIIs in their de-phosphorylated form are attached to PSII, thus 872 
boosting its light harvesting and excitation. This condition is known as State 1. When light 873 
regimes change such that PSII is favored, mobile LHCIIs are phosphorylated and move to PSI to 874 
increase its absorption cross section, leading to State 2 of the photosystems. The energy 875 
imbalance between PSII and PSI and thus the need for state transition are sensed by the redox 876 
state of the pool of free plastoquinone (PQ) molecules which transport electrons within the 877 
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thylakoid membranes from PSII to Cyt. Currently we lack a quantitative model to predict state 878 
transition, and  is often assumed to be 0.5. But a change in the value of  will lead to a 879 
proportional change in ChlaF emission from PSII (Eqs 3 and 8), other conditions being equal. As 880 
a result, a dynamic  significantly impacts the response of ChlaF emission to variations in 881 
environmental conditions because of the change in energy allocation between PSII and PSI. 882 
ChlaF emission is believed to be dominated by PSII because PSI is photochemically more 883 
efficient than PSII (Hogewoning et al., 2012; Lazár, 2013). Thus, a change in PSII ChlaF 884 
emission cannot be compensated for by change in PSI ChlaF emission when  varies. Although 885 
state transition is often studied at short time scales (seconds to hours, Minagawa 2011), 886 
conceivably    could vary with canopy depth, phenology, species, and prevailing climate 887 
conditions (e.g. Porcar-Castell et al. 2014) which could affect the ratio of cyclic to linear electron 888 
transport required to support the Calvin-Benson Cycle, resulting in the need to rebalance the 889 
energy harvesting by the two photosystems. However, this remains uncharted and would deserve 890 
future attention.  891 

Although it is a reasonable assumption that PSI plays a minor role in ChlaF emission 892 
when the overall energy level is considered, it is not clear whether this assumption is also valid 893 
over wavelengths at which SIF is retrieved from existing instruments. This issue is equivalent to 894 
asking whether any difference in the PSII and PSI spectral shape functions (  and ) is 895 
sufficiently small such that PSII ChlaF emission dominates at every wavelength. SIF cannot be 896 
observed in broadbands and has to be observed at Fraunhofer lines, O2-A or -B bands. There is 897 
no a priori knowledge or observations to indicate how similar or different  and  are. Further 898 
studies on this issue either with theoretical analyses or observations are needed. If it turns out 899 
that PSI contribution cannot be ignored, then measurements and better understanding in the 900 
dynamics of  and  will be needed. 901 

The ultrastructure of thylakoids is not static and has been observed to swell in the light 902 
and shrink in the dark (Li et al., 2020). The ultrastructural dynamics of thylakoids can regulate a 903 
number of processes that control photosynthetic ETR, including macromolecular 904 
blocking/collision probability, direct diffusional pathlength, Cyt duty division (Johnson and 905 
Berry 2021), luminal pH via osmotic water fluxes, and separation of pH dynamics between 906 
granal and lamellar lumens in response to environmental variations. Gu et al. (2022) discussed 907 
these impacts in detail. As photosynthetic ETR is directly coupled to ChlaF emission, the 908 
thylakoid ultrastructural dynamics induced by changes in environmental conditions can feedback 909 
to SIF dynamics (Eqs 6 and 9). Furthermore, pigments are located in the thylakoid membranes. 910 
As the thylakoid swells and shrinks, the pigment packing on the membranes will shift, affecting 911 
 and thus photon interception and absorption and excitation energy transfer. Currently there is 912 

little knowledge regarding potential impacts of thylakoid ultrastructural dynamics on ChlaF 913 
emission. 914 

Alternative electron sinks: ETR from PSII to PSI, which can be inferred from the ChlaF 915 
emission, supports not only photosynthesis but also other stromal metabolisms such as nitrate 916 
reduction, photoreduction of oxygen, and emission of volatile organic compounds (VOC). As a 917 
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result, ETR that supports photosynthesis is smaller than the rate that can be inferred from ChlaF 918 
emission and SIF measurements (Von Caemmerer, 2000). Alternative electron sinks serve as 919 
photoprotective mechanisms when plants are under stress and the energy harvested by 920 
photosystems exceeds the need of carboxylation and oxygenation. Thus alternative electron sinks 921 
can be strong under stressful environmental conditions (Alric & Johnson, 2017). The presence of 922 
alternative electron sinks is likely a key physiological mechanism affecting the SIF dynamics 923 
and the decoupling of SIF and GPP (Fig. 2 and Eqs3, 6-10), which remains uncharted and 924 
warrants future research.   925 

   926 
Mechanisms and model parameterization of water and heat stress. One major 927 

knowledge gap is to pin down the exact mechanisms (e.g., leaf expansion/fall, heat dissipation, 928 
stomatal closure, hydraulic failure, carbon starvation) that plants use to respond and/or adapt to 929 
stress at different timescales, and how these stresses influence ChlaF emission and the observed 930 
SIF signal . Filling this knowledge gap is crucial to enable SIF applications for inferring 931 
plant traits, selecting stress-tolerant crop genotypes/phenotypes, precision agriculture 932 
management, as well as regional-scale monitoring and early warning capacity for stress and food 933 
insecurity, etc (Sun et al., 2023b). A barrier is that SIF itself and its coupling with GPP is 934 
affected by a myriad of interactive processes and environmental variations (the forward issue, Eq 935 
3), and thus the observed SIF  reflects their collective and interactive effects (the 936 
inference issue, Eqs 9-10). Additional complexity would arise if multiple stresses co-occur, e.g., 937 
heatwave and drought, insect outbreak accompanied with water/heat stress, or flooding followed 938 
with nitrogen leaching, etc. Under such scenarios, SIF may reveal their amplified or 939 
compensating effect, but SIF alone is insufficient to tease out individual contributions. 940 
Observational and modeling innovations are needed to tackle these challenges (Sun et al., 941 
2023b).  942 
 943 

Connection of SIF to stomatal conductance and transpiration. The apparent 944 
correlation between SIF and transpiration obtained so far, although promising, is sensitive to 945 
three assumptions: a) the ratio of transpiration (T) to total evapotranspiration (ET) approaches to 946 
unity (during the peak growing season without rain events) (Lu et al., 2018; Shan et al., 2019), b) 947 
stomata optimize their openness to balance carbon uptake and water loss (Shan et al., 2019; Zhou 948 
et al., 2022), and c) SIF is linearly related to GPP. However, the first assumption holds only for 949 
certain ecosystems with high LAI (e.g., crops, deciduous forests) but not others (e.g., 950 
Mediterranean ecosystems); the second could be a reasonable assumption but the exact 951 
conditions under which it holds require future investigations (Stoy et al., 2019). The third 952 
assumption can be violated at shorter timescales and/or under stress (thorough discussion in 3.3 953 
and Sun et al., 2023b).  954 
 955 
Estimation of SIF escape probability: The majority of SIF applications across all sectors so far 956 
(Sun et al., 2023b) do not effectively correct the escape probability SIF although a variety of 957 
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practical approaches have recently emerged (Table 2), confounding the validity of their findings 958 
and mechanistic understanding. Strictly speaking,  or can only be explicitly estimated 959 
with RTMs of SIF, ideally with the ray tracing approach that specifies the 3D structure of plant 960 
canopy. From RTM theory, we can explain the magnitude and directionality of the variations in 961 
SIF and  induced by vegetation structure (Joiner et al., 2020). However, the computational 962 
demand prevents its practical applications especially at the ecosystem scale and beyond.  The 963 
recent theoretical development of reflectance based approaches appears promising to 964 
approximate ; however, attempts to correct it across biomes and different scales are often 965 
inconclusive due to both noisy SIF data (Sun et al., 2023b) and various assumptions/limitations 966 
in the  formulations (P1-S8 in Table 2).  967 
 968 

4.2 Theoretical innovations at the leaf level: Coupling photophysics, photochemistry, and 969 
biochemistry 970 

The key theoretical gaps identified above call for corresponding theoretical innovations in 971 
solutions (Fig. 5). These gaps are not independent, and filling them requires system thinking at 972 
the level of molecular mechanisms. To better understand how innovative solutions may be 973 
developed, we adopt the three stages of reactions of photosynthesis: photophysical reactions, 974 
photochemical reactions, and biochemical reactions. The necessity of dividing the light reactions 975 
into the photophysical and photochemical reactions is due to the fact that these two groups of 976 
reactions occur at different places with vastly different time scales and follow different laws. 977 
 Because the three stages are coupled, any equations that describe only one or two of the 978 
three reactions cannot be closed. For example, Eqs 1-3 and 6 are photophysical equations and 979 
can be applied only when additional information on variables such as  and  is 980 
supplied. Eq 7 attempts to couple photophysics and photochemistry to model GPP, which also 981 
requires additional modeling of  and . The widely used FvCB model mechanistically 982 
describes the biochemical reactions, and depends on an empirical equation relating potential 983 
electron transport rate  to light intensity to provide a closure for modeling photosynthesis. 984 
 The weakest link in our efforts to relate SIF to GPP is photochemical reactions along the 985 
electron transport chain. The photochemical reactions are the bridge between the photophysical 986 
and biochemical reactions. While the models of photophysical and biochemical reactions have 987 
been sufficiently developed for SIF applications (Farquhar et al., 1980; Gu et al., 2019, Eqs 1-3, 988 
and 6), the same cannot be said for the photochemical reactions. Gu et al. (2023) derived 989 
analytical steady-state equations governing the states and redox reactions of complexes and 990 
electron carriers along the photosynthetic electron transport chain between PSII and Cyt. The 991 
impact of thylakoid ultrastructural dynamics on electron transport is represented by a light-992 
induced thylakoid swelling/shrinking function that is applied to the fraction of Cyt available for 993 
linear electron transport. These equations are universal to oxygenic photosynthetic pathways, and 994 
allow the redox conditions of the mobile plastoquinone pool and Cyt to be inferred with typical 995 
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fluorometry. There are three critical next steps that need to be taken. One is to apply a similar 996 
approach and derive governing equations for electron transport from Cyt to PSI to NADP+ 997 
(linear transport) or to the PQ pool (cyclic transport around PSI) (J. E. Johnson & Berry, 2021). 998 
The second is to develop a model that links the redox state of mobile plastoquinone (PQ) with 999 
state transition. The redox state of PQ, which is already modeled in Gu et al. (2023), triggers 1000 
state transition (Minagawa, 2011), and therefore could serve as a reliable predictor of state 1001 
transition. The third is to develop a mechanistic model that could predict the alternative electron 1002 
sinks, particularly VOC emissions, based on environmental conditions. Once these critical steps 1003 
have been accomplished, a complete photochemical model will be established, allowing a full 1004 
coupling of photophysical, photochemical, and biochemical reactions to mechanistically study 1005 
SIF-GPP relationships. 1006 
 Nevertheless, these steps are not easy and completing them will require substantial 1007 
research efforts at time scales ranging from seconds to seasonal. In particular, the coupling of 1008 
photophysics, photochemistry, and biochemistry will need to be tested for a wide range of 1009 
environmental conditions including water and heat stresses. Both redox reactions and diffusion 1010 
of electron carriers in photochemistry and enzymatic reactions in biochemistry are sensitive to 1011 
temperature. Although temperature response functions are available, these functions have been 1012 
rarely tested under extreme conditions. Water stress affects  and CO2 supply to Rubisco, which 1013 
will lead to feedback effects on the photophysical and photochemical reactions. At the present, 1014 
these feedbacks have not been understood. Furthermore, stresses may damage organs and tissues 1015 
such as photosystems and thylakoid membranes which would cause state change in the 1016 
photosynthetic machinery, which is hard to model. 1017 

In the interim, empirical models of key photophysical and photochemical variables based 1018 
on intensive and extensive PAM fluorometry measurements can be applied as temporary 1019 
solutions to satisfy the need for process-based guidance for analyzing the rapidly increasing 1020 
amount of SIF data. For example, simple light response functions of  (Serôdio & Lavaud, 1021 
2011) and  (Han, Chang, et al., 2022) can be used to satisfy modeling needs at diurnal time 1022 
scales. The empirical relationship between the photochemical yield of PSII and NPQ as 1023 
developed in Van der Tol et al. (2014) may also serve as a partial closure solution at conditions 1024 
when variations in  are small. Alternatively, one could potentially use estimated NPQ as 1025 
inputs. NPQ can be estimated by monitoring the photochemical reflectance index over short time 1026 
scales (Garbulsky et al., 2011). Nevertheless it must be emphasized these temporary solutions do 1027 
not have general applicability and their validity must be evaluated on a case by case basis. 1028 
 1029 
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 1030 
Fig. 5. Outlook for future SIF research efforts and priority. Research priority in mechanistic 1031 
understanding, measurements, and model development respectively for each leaf/canopy 1032 
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structure/function in Fig. 2 is mapped out. The letter D and S+ denote diurnal scale and seasonal 1033 
scale/beyond respectively, highlighting time scales each research effort should focus on. 1034 

4.3 Theoretical innovations at the canopy scale 1035 

Future research innovations at the canopy scale should focus on the following aspects. 1036 
Benchmarking RTM: Numerous leaf/canopy-level RTM with SIF capability have been 1037 
developed at different levels of complexity, but their performance and applicability across 1038 
biomes (with different leaf/canopy structures), landscape heterogeneities (with different 1039 
composition/abundance of land covers), and biotic/abiotic stresses (with different symptomatic 1040 
and asymptomatic spectral signatures) remains to be comprehensively evaluated. The RAdiation 1041 
transfer Model Intercomparison (RAMI) protocol (Widlowski et al., 2015) well-established for 1042 
surface reflectance can be adopted to benchmark SIF simulations. In particular, model validation 1043 
with in-situ measurements of SIF (Parazoo et al., 2019; Yang et al., 2020), along with surface 1044 
reflectance, e.g., SpecNet (Gamon et al., 2006), across diverse biomes and climate regimes is 1045 
critical to ensure the realism of RTMs, despite the difficulty in concurrently obtaining latent 1046 
quantities such as , and the actual leaf/soil optical properties. Moreover, the leaf/canopy 1047 
RTM can be further integrated with atmospheric RTM to facilitate direct integration of at-sensor 1048 
reflectance spectra (acquired by diverse platforms) (e.g., Yang et al., 2020). This can help 1049 
address how the varying O2-A depth between the direct and diffuse solar radiation impacts SIF 1050 
retrieval from reflectance spectra, which remains one major challenge to disentangle solely from 1051 
measurements.  1052 
 1053 
Improving computational efficiency of RTM: The formidable computational demand of 1054 
current RTMs (especially 3D) may be overcome with parsimonious surrogate models. For 1055 
example, the FluorRTER RTM (Zeng et al., 2020) has similar performance to the full 3D ray-1056 
tracing FluorWPS, but is computationally much more affordable. Machine learning represents a 1057 
promising pathway to effectively emulate complex physical processes with computational 1058 
efficiency. Both approaches have the potential to make RTM inversions more accessible to users 1059 
and more applicable at large spatial scales. For applications at global scales and/or spanning 1060 
decades (e.g., constraining carbon budgets), a two-stream treatment of SIF RTM would be 1061 
computationally more tangible (Li et al., 2022; Thum et al., 2017). In this case, an integrated 1062 
solar radiation and SIF RTM should be developed based on the first principles of radiative 1063 
transfer. From a physical point of view, the only difference between solar and SIF radiative 1064 
transfer is that the source of solar radiation comes from the sun above the canopy top while the 1065 
source of SIF is distributed within the canopy. Other than that, they follow the same physics. 1066 
Furthermore, SIF radiative transfer is analogous to the longwave radiative transfer in plant 1067 
canopies without the need to consider thermal emissions from sky; just like SIF, longwave 1068 
radiation also has sources in plant canopies. Therefore, the highly efficient matrix approach for 1069 
modeling longwave radiative transfer (Gu et al., 1999) can be modified to model SIF radiative 1070 
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transfer in plant canopies. Either a two-stream or matrix-based SIF radiative transfer modeling 1071 
approach, built upon basic physical principles, can be applied at regional to global scales. 1072 
 1073 
Refinement of the toy model: The analytical framework developed here can be employed as an 1074 
exploratory tool to facilitate process interpretation and diagnosis (Sun et al., 2023b), as it 1075 
explicitly reveals the core and complex interacting mechanisms that are hidden in the light use 1076 
efficiency models (Eqs 3, 6-8). Moreover, built upon theoretical understanding, the analytical 1077 
solution has the potential to be applied universally across spatial and temporal scales towards 1078 
various applications (Sun et al., 2023b). Nevertheless, in developing the toy model here, we have 1079 
deliberately removed many details so that we can focus on core mechanisms; therefore it should 1080 
be subject to rigorous test and refinement in the future due to various assumptions (detailed in 1081 

SI). For example, the current form of leaf to canopy integration is a highly conceptualized 1082 
notation, and can take different forms with varying complexity in actual implementations. In the 1083 
future, Eqs 8 and 10 can be expanded to separately model the sunlit and shaded components by 1084 
explicitly accounting for the direct and diffuse solar radiation. This will inevitably introduce 1085 
more complexities to model formulations. Moreover, Eqs 8-10 require additional information 1086 
(beyond the integrated canopy functional/structural information carried in SIF), i.e., 1087 
variables/parameters that are impacted by canopy structure (e.g., affecting solar and fluorescence 1088 
attenuation), vertical distribution/variation of leaf functions (i.e., the redox states and/or NPQ) 1089 
and pigment content/nutrient content (Fig. 5). Observational innovations are concurrently needed 1090 
to facilitate model improvement in these aspects. On the other hand, Eq 10 can be used to 1091 
diagnose the degree of linearity of SIF and GPP and contributing processes/parameters from the 1092 
physiological and structural perspectives.  1093 

 1094 

5. Conclusions 1095 

This review synthesizes theoretical understandings of photon harvesting, energy 1096 
dissipation pathways and SIF radiative transfer in leaves and canopy to develop an analytical 1097 
framework that 1) highlights the complex impacts of key leaf/canopy structure/function and their 1098 
interactions on ChlaF emission and 2) guides the transformation of at-sensor SIF into meaningful 1099 
information regarding photosynthetic electron transport and GPP. This framework enables 1100 
identifying actionable solutions to tackle existing theoretical challenges and research priorities 1101 
over the next 5-10 years. Key points this review aims to deliver are:  1102 

● Harnessing theory and data: Theories and data advancements should go hand-in-hand, 1103 
in order to shift from correlational analyses to causal quantification and reasoning. 1104 

● Appreciating the process complexity: SIF is a single signal regulated by a myriad of 1105 
complex biophysical, biochemical, and physiological processes in response to 1106 
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environmental variations and anthropogenic perturbations. Inferring specific processes 1107 
requires careful control of remaining interacting processes, with the aid of observation 1108 
technology that can offer complementary information.  1109 

● Versatile application potential of the toy model. The toy model developed should be 1110 
treated as an exploratory tool subject to rigorous test and refinement in the future due to 1111 
various assumptions. Nevertheless, it conceptually represents a substantial improvement 1112 
over light use efficiency models and can be employed at different spatial and temporal 1113 
scales for process interpretation/diagnosis towards various applications (Sun et al., 1114 
2023b).  1115 

    1116 
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