001006856 001__ 1006856
001006856 005__ 20230929112525.0
001006856 0247_ $$2doi$$a10.3390/brainsci13040672
001006856 0247_ $$2Handle$$a2128/34322
001006856 0247_ $$2pmid$$a37190637
001006856 0247_ $$2WOS$$aWOS:000977704900001
001006856 037__ $$aFZJ-2023-01898
001006856 082__ $$a570
001006856 1001_ $$0P:(DE-HGF)0$$aAfshani, Mortaza$$b0
001006856 245__ $$aDiscriminating Paradoxical and Psychophysiological Insomnia Based on Structural and Functional Brain Images: A Preliminary Machine Learning Study
001006856 260__ $$aBasel$$bMDPI AG$$c2023
001006856 3367_ $$2DRIVER$$aarticle
001006856 3367_ $$2DataCite$$aOutput Types/Journal article
001006856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681976480_23446
001006856 3367_ $$2BibTeX$$aARTICLE
001006856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006856 3367_ $$00$$2EndNote$$aJournal Article
001006856 520__ $$aInsomnia disorder (ID) is a prevalent mental illness. Several behavioral and neuroimaging studies suggested that ID is a heterogenous condition with various subtypes. However, neurobiological alterations in different subtypes of ID are poorly understood. We aimed to assess whether unimodal and multimodal whole-brain neuroimaging measurements can discriminate two commonly described ID subtypes (i.e., paradoxical and psychophysiological insomnia) from each other and healthy subjects. We obtained T1-weighted images and resting-state fMRI from 34 patients with ID and 48 healthy controls. The outcome measures were grey matter volume, cortical thickness, amplitude of low-frequency fluctuation, degree centrality, and regional homogeneity. Subsequently, we applied support vector machines to classify subjects via unimodal and multimodal measures. The results of the multimodal classification were superior to those of unimodal approaches, i.e., we achieved 81% accuracy in separating psychophysiological vs. control, 87% for paradoxical vs. control, and 89% for paradoxical vs. psychophysiological insomnia. This preliminary study provides evidence that structural and functional brain data can help to distinguish two common subtypes of ID from each other and healthy subjects. These initial findings may stimulate further research to identify the underlying mechanism of each subtype and develop personalized treatments for ID in the future.
001006856 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001006856 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006856 7001_ $$0P:(DE-HGF)0$$aMahmoodi-Aznaveh, Ahmad$$b1
001006856 7001_ $$0P:(DE-HGF)0$$aNoori, Khadijeh$$b2
001006856 7001_ $$0P:(DE-HGF)0$$aRostampour, Masoumeh$$b3
001006856 7001_ $$0P:(DE-HGF)0$$aZarei, Mojtaba$$b4
001006856 7001_ $$0P:(DE-HGF)0$$aSpiegelhalder, Kai$$b5
001006856 7001_ $$0P:(DE-HGF)0$$aKhazaie, Habibolah$$b6
001006856 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b7$$eCorresponding author
001006856 773__ $$0PERI:(DE-600)2651993-8$$a10.3390/brainsci13040672$$gVol. 13, no. 4, p. 672 -$$n4$$p672 -$$tBrain Sciences$$v13$$x2076-3425$$y2023
001006856 8564_ $$uhttps://juser.fz-juelich.de/record/1006856/files/Tahmasian%20DiscriminatingPostprint.docx$$yOpenAccess
001006856 8564_ $$uhttps://juser.fz-juelich.de/record/1006856/files/brainsci-13-00672.pdf$$yOpenAccess
001006856 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001006856 909CO $$ooai:juser.fz-juelich.de:1006856$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b7$$kFZJ
001006856 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188400$$a HHU Düsseldorf$$b7
001006856 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001006856 9141_ $$y2023
001006856 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006856 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006856 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006856 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001006856 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001006856 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006856 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001006856 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001006856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006856 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001006856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN SCI : 2022$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:08Z
001006856 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:08Z
001006856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:08Z
001006856 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001006856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001006856 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001006856 9801_ $$aFullTexts
001006856 980__ $$ajournal
001006856 980__ $$aVDB
001006856 980__ $$aUNRESTRICTED
001006856 980__ $$aI:(DE-Juel1)INM-7-20090406
001006856 980__ $$aAPC