001     1006856
005     20230929112525.0
024 7 _ |a 10.3390/brainsci13040672
|2 doi
024 7 _ |a 2128/34322
|2 Handle
024 7 _ |a 37190637
|2 pmid
024 7 _ |a WOS:000977704900001
|2 WOS
037 _ _ |a FZJ-2023-01898
082 _ _ |a 570
100 1 _ |a Afshani, Mortaza
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Discriminating Paradoxical and Psychophysiological Insomnia Based on Structural and Functional Brain Images: A Preliminary Machine Learning Study
260 _ _ |a Basel
|c 2023
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681976480_23446
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Insomnia disorder (ID) is a prevalent mental illness. Several behavioral and neuroimaging studies suggested that ID is a heterogenous condition with various subtypes. However, neurobiological alterations in different subtypes of ID are poorly understood. We aimed to assess whether unimodal and multimodal whole-brain neuroimaging measurements can discriminate two commonly described ID subtypes (i.e., paradoxical and psychophysiological insomnia) from each other and healthy subjects. We obtained T1-weighted images and resting-state fMRI from 34 patients with ID and 48 healthy controls. The outcome measures were grey matter volume, cortical thickness, amplitude of low-frequency fluctuation, degree centrality, and regional homogeneity. Subsequently, we applied support vector machines to classify subjects via unimodal and multimodal measures. The results of the multimodal classification were superior to those of unimodal approaches, i.e., we achieved 81% accuracy in separating psychophysiological vs. control, 87% for paradoxical vs. control, and 89% for paradoxical vs. psychophysiological insomnia. This preliminary study provides evidence that structural and functional brain data can help to distinguish two common subtypes of ID from each other and healthy subjects. These initial findings may stimulate further research to identify the underlying mechanism of each subtype and develop personalized treatments for ID in the future.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mahmoodi-Aznaveh, Ahmad
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Noori, Khadijeh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rostampour, Masoumeh
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zarei, Mojtaba
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Spiegelhalder, Kai
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Khazaie, Habibolah
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tahmasian, Masoud
|0 P:(DE-Juel1)188400
|b 7
|e Corresponding author
773 _ _ |a 10.3390/brainsci13040672
|g Vol. 13, no. 4, p. 672 -
|0 PERI:(DE-600)2651993-8
|n 4
|p 672 -
|t Brain Sciences
|v 13
|y 2023
|x 2076-3425
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006856/files/Tahmasian%20DiscriminatingPostprint.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006856/files/brainsci-13-00672.pdf
909 C O |o oai:juser.fz-juelich.de:1006856
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)188400
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)188400
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN SCI : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:57:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:57:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:57:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21