001     1006858
005     20231027114402.0
024 7 _ |a 10.1038/s43247-023-00757-x
|2 doi
024 7 _ |a 2128/34372
|2 Handle
024 7 _ |a WOS:000957824600001
|2 WOS
037 _ _ |a FZJ-2023-01900
082 _ _ |a 550
100 1 _ |a Poppe Terán, Christian
|0 P:(DE-Juel1)180763
|b 0
|e Corresponding author
245 _ _ |a Rising water-use efficiency in European grasslands is driven by increased primary production
260 _ _ |a London
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683535436_21350
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Water-use efficiency is the amount of carbon assimilated per water used by an ecosystem and a key indicator of ecosystem functioning, but its variability in response to climate change and droughts is not thoroughly understood. Here, we investigated trends, drought response and drivers of three water-use efficiency indices from 1995–2018 in Europe with remote sensing data that considered long-term environmental effects. We show that inherent water-use efficiency decreased by −4.2% in Central Europe, exhibiting threatened ecosystem functioning. In European grasslands it increased by +24.2%, by regulated transpiration and increased carbon assimilation. Further, we highlight modulation of water-use efficiency drought response by hydro-climate and the importance of adaptive canopy conductance on ecosystem function. Our results imply that decoupling carbon assimilation from canopy conductance and efficient water management strategies could make the difference between threatened and well-coping ecosystems with ongoing climate change, and provide important insights for land surface model development.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a eLTER PLUS - European long-term ecosystem, critical zone and socio-ecological systems research infrastructure PLUS (871128)
|0 G:(EU-Grant)871128
|c 871128
|f H2020-INFRAIA-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Naz, Bibi S.
|0 P:(DE-Juel1)169794
|b 1
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 2
700 1 _ |a Qu, Yuquan
|0 P:(DE-Juel1)180577
|b 3
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
700 1 _ |a Baatz, Roland
|0 P:(DE-Juel1)144513
|b 5
700 1 _ |a Ciais, Phillipe
|0 0000-0001-8560-4943
|b 6
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 7
773 _ _ |a 10.1038/s43247-023-00757-x
|g Vol. 4, no. 1, p. 95
|0 PERI:(DE-600)3037243-4
|n 1
|p 95
|t Communications earth & environment
|v 4
|y 2023
|x 2662-4435
856 4 _ |u https://juser.fz-juelich.de/record/1006858/files/s43247-023-00757-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006858
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180577
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:10Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review, Anonymous peer review, Double anonymous peer review
|d 2023-04-12T15:13:10Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN EARTH ENVIRON : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN EARTH ENVIRON : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21