001006859 001__ 1006859
001006859 005__ 20240226075506.0
001006859 0247_ $$2doi$$a10.18502/jbe.v8i3.12305
001006859 0247_ $$2ISSN$$a2383-4196
001006859 0247_ $$2ISSN$$a2383-420X
001006859 0247_ $$2Handle$$a2128/34327
001006859 037__ $$aFZJ-2023-01901
001006859 082__ $$a610
001006859 1001_ $$0P:(DE-HGF)0$$aMohammadzadeh, Morteza$$b0
001006859 245__ $$aOn The Search for Convergence of Functional Brain Patterns across Neuroimaging Studies: A Coordinate-Based Meta-Analysis Using Gibbs Point Process
001006859 260__ $$aTehran$$bTehran University of Medical Sciences$$c2022
001006859 3367_ $$2DRIVER$$aarticle
001006859 3367_ $$2DataCite$$aOutput Types/Journal article
001006859 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1681977328_23311
001006859 3367_ $$2BibTeX$$aARTICLE
001006859 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006859 3367_ $$00$$2EndNote$$aJournal Article
001006859 520__ $$aIntroduction: Coordinate-based meta-analysis (CBMA) is a standard method for integrating brain functional patterns in neuroimaging studies. CBMA aims to identify convergency in activated brain regions across studies using coordinates of the peak activation (foci). Here, we aimed to introduce a new application of the Gibbs models for the meta-regression of the neuroimaging studies.Methods: We used a dataset acquired from 31 studies by previous work. For each study as well as foci, study features such as SD duration and the average age were extracted. Two widely Gibbs models, Area-interaction and Geyer saturation were fitted on the foci. These models can quantify and test evidence for clusters in foci using an interaction parameter. We included study features in the models to identify their contribution to foci distribution and hence determine sources of the heterogeneity.Results: Our results revealed that latent study-specific features have a moderate contribution to the heterogeneity of foci distribution. However, the effect of age and SD duration was not significant (p<0.001). Additionally, the estimated interaction parameter was 1.34 (p<0.001) which denotes strong evidence of clusters in foci.Conclusions: Overall, this study highlighted the role of the interaction parameter in CBMA. The results of this work suggest that Gibbs models can be considered as a promising tool for neuroimaging meta-analysis
001006859 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001006859 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006859 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b1$$eCorresponding author$$ufzj
001006859 7001_ $$0P:(DE-HGF)0$$aRasekhi, Aliakbar$$b2
001006859 773__ $$0PERI:(DE-600)2806590-6$$a10.18502/jbe.v8i3.12305$$n3$$p.$$tJournal of Biostatistics and Epidemiology$$v8$$x2383-4196$$y2022
001006859 8564_ $$uhttps://juser.fz-juelich.de/record/1006859/files/899-Article%20Text-4943-1-10-20230312.pdf$$yOpenAccess
001006859 909CO $$ooai:juser.fz-juelich.de:1006859$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b1$$kFZJ
001006859 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
001006859 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001006859 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-12-05T10:38:30Z
001006859 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-12-05T10:38:30Z
001006859 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006859 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2020-12-05T10:38:30Z
001006859 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001006859 9141_ $$y2023
001006859 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001006859 9801_ $$aFullTexts
001006859 980__ $$ajournal
001006859 980__ $$aVDB
001006859 980__ $$aUNRESTRICTED
001006859 980__ $$aI:(DE-Juel1)INM-7-20090406