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Active learning-assisted neutron spectro-
scopy with log-Gaussian processes
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Neutron scattering experiments at three-axes spectrometers (TAS) investigate
magnetic and lattice excitations by measuring intensity distributions to
understand the origins of materials properties. The high demand and limited
availability of beam time for TAS experiments however raise the natural
question whether we can improve their efficiency and make better use of the
experimenter’s time. In fact, there are a number of scientific problems that
require searching for signals, which may be time consuming and inefficient if
done manually due to measurements in uninformative regions. Here, we
describe a probabilistic active learning approach that not only runs autono-
mously, i.e., without human interference, but can also directly provide loca-
tions for informative measurements in a mathematically sound and
methodologically robust way by exploiting log-Gaussian processes. Ulti-
mately, the resulting benefits can be demonstrated on a real TAS experiment
and a benchmark including numerous different excitations.

Neutron three-axes spectrometers (TAS)1 enable understanding the
origins ofmaterials properties through detailed studies ofmagnetic
and lattice excitations in a sample. Developed in the middle of the
last century, the technique remains one of the most significant in
fundamental materials research and was therefore awarded the
Nobel prize in 19942. It is used for investigating the most interesting
and exciting phenomena of their time: the cause of different crystal
structures in iron3, unconventional superconductors4, quantum
spin glasses5, quantum spin liquids6, and non-trivial magnetic
structures7.

TAS are globally operated at neutron sources of large-scale
research facilities andmeasure scattering intensity distributions in the
material’s four-dimensionalQ-E space, i.e., in its momentum space (Q)
for different energy transfers (E)8, by counting scattered neutrons on a
single detector. However, high demand and limited availability make
beam time at TAS a valuable resource for experimenters. Since, fur-
thermore, the intensity distributions of the aforementioned excita-
tions have an information density that strongly varies over Q-E space
due to the direction of the underlying interactions and the symmetry
of the crystal, and TAS measure sequentially at single locations in Q-E
space, it is natural to think about if and how we can improve the

efficiency of TAS experiments and make better use of the
experimenter’s time.

In experimental workflows at TAS, there are scenarios where the
intensity distribution to be measured is not known in advance and
therefore a rapid overview of the same in a particular region of Q-E
space is required. So far, experimenters then decide manually how to
organize thesemeasurements in detail. In this mode, however, there is
a possibility depending on the specific scenario thatmeasurements do
not provide any further information and thus waste beam time since
they are placed in the so-called background, i.e., regions with either no
or parasitic signal. If there were computational approaches that
autonomously, i.e., without human interference, place measurements
mainly in regions of signal instead of background in order to acquire
more information on the intensity distribution in less time, not only
the use of beam time gets optimized, but also the experimenters can
focus on other relevant tasks in the meantime.

The potential of autonomous approaches for data acquisition was
recognized throughout the scattering community in recent years.
gpCAM, for example, is an approach that is also based on GPR and
applicable to any scenario in which users can specify a reasonable
acquisition function to determine locations of next measurements9,10.
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It was originally demonstrated on small-angle X-ray scattering (SAXS)
and grazing-incidence small-angle X-ray scattering (GISAXS) applica-
tions. However, it was also applied to a TAS setting recently11. In
reflectometry, experiments can be optimized by placing measure-
ments at locations of maximum information gain using Fisher
information12,13. Furthermore, the maximum a posteriori (MAP) esti-
mator of a quantity of interest in a Bayesian setting14,15 can be used to
accelerate small-angle neutron scattering (SANS) experiments16.
Moreover, neutron diffraction experiments are shown to benefit from
active learning by incorporating prior scientific knowledge of neutron
scattering and magnetic physics into GPR for an on-the-fly interpola-
tion and extrapolation17. Materials synthesis and materials discovery
were also considered aspotentialfields of application18,19. Interestingly,
log-Gaussian (Cox) processes20, the technique thatweuse as a basis for
our approach, are applied in various domains such as epidemiology21,
insurance22, geostatistics23, or forestry24,25. The common factor of all
those applications is the possibility to model or interpret their corre-
sponding quantity of interest as an intensity.

From the field of artificial intelligence and machine learning,
active learning26–28 (also called optimal experimental design in statistics
literature) provides a general approach that can be taken into account
for the task of autonomous data acquisition in TAS experiments. In our
context, an active learning approach sequentially collects intensity
data while deciding autonomously where to place the next measure-
ment. In other words, it updates its own source of information that its
further decisions are based on.

The approach that we describe in this work regards an intensity
distribution as a non-negative function over the domain of investiga-
tion and approximates it probabilistically by the mean function of a
stochastic process. Theprimaryobjective forour choiceof a stochastic
process is that its posterior approximation uncertainties, i.e., its stan-
dard deviations after incorporating collected data, are largest in
regions of signal as this enables us to identify them directly by max-
imizing the uncertainty as an acquisition function.Moreconcretely, we
fit a log-Gaussian process to the intensity observations, i.e., we apply
Gaussian process regression (GPR)29 to logarithmic intensities and
exponentiate the resulting posterior process. The fact that GPR is a
Bayesian technique that uses pointwise normal distributions to fit
noisy data from an underlying inaccessible function of interest makes
it indeed an interesting candidate for many applications and use cases
where it is important to quantify some sort of uncertainty. However,
we will see that, in our case, it is the logarithmic transformation of
observed intensities that leads to large uncertainties in regions of
signal and is thus the central element of our approach. Nevertheless,
this approach is not only able to detect regions with strong signals, but
also thosewithweak signals. A thresholdparameter for intensity values
and a background level, both estimated by statistics of an initial set of
intensity observations on a particular grid, can control which signals
are subject to be detected or neglected. Furthermore, costs for chan-
ging the measurement location caused by moving the axes of the
instrument are respected as well.

Since gpCAM is the only of the mentioned approaches that was
already applied to TAS11, it is possible to briefly contrast it with ours.
For the TAS setting, we see two major differences. First, gpCAM
approximates the original intensity function (instead of its logarithm)
which violates a formal assumption of GPR. In fact, GPR assumes that
the function of interest is a realization of a Gaussian process. Since
normal distributions have support on the entire real line, their reali-
zations can, with positive probability, take negative values which is not
possible fornon-negative intensity functions. This issuedoes not occur
in our methodology because we approximate the logarithm of the
intensity functionwith GPR. Secondly, for identifying regions of signal,
gpCAM requires users to specify an acquisition function based on a
GPR approximation which can be problematic. Indeed, especially at
the beginning of an experiment, having no or not much information

about the intensity distribution, it can be difficult to find a reasonable
acquisition function which leads to an efficient experiment. Moreover,
even if users were successful in finding an acquisition function that
works for a particular experiment, there is no guarantee that it is also
applicable for another experiment with a different setting. Addition-
ally, the acquisition function used in the only TAS experiment of
gpCAM so far [ref. 11, Eq. (6)] makes it risk losing some of its
interpretability30,31 in the TAS setting, because physical units do not
match and it is not obvious from a physics point of view why this
function in particular is suitable for the goal of placing measurement
points in regions of signal. In contrast, we are able to choose a parti-
cular canonical acquisition function that remains the same for each
experiment since we identify regions of signal by the methodology
itself or, more concretely, by the logarithmic transformation of a
Gaussian process, and not primarily by an acquisition function as the
critical component. Furthermore, the mentioned parameters of our
approach, the intensity threshold and the background level, are both
scalar values with, and not functions without a physical meaning. They
are thus directly interpretable and can be estimated using initial
measurements in a provably robust manner or set manually.

In this work, we demonstrate the applicability and benefits of our
approach in two different ways. First, we present outcomes of a real
neutron experiment performed at the thermal TAS EIGER32 at the
continuous spallation source SINQ of Paul Scherrer Institute (PSI) in
Villigen, Switzerland. In particular, we compare with a grid approach
and investigate the robustness of the results w.r.t. changes in the
estimated background level and intensity threshold. It canbe seen that
our approach robustly identifies regions of signal, even those of small
shape, and hence is able to improve the efficiency of this experiment.
Moreover, we challenge our approachwith a difficult initial setting and
can demonstrate that its behaviour remains reasonable. Secondly, we
apply a benchmarkwith several synthetic intensity functions andmake
fair comparisons with two competing approaches: an approach that
places measurements uniformly at random and again a grid-based
approach. In this setting, efficiency ismeasured by the time to reduce a
relativeweighted error in approximating the target intensity functions.
The results show that our approach significantly improves efficiency
for most intensity functions compared to the random and grid
approach and is at least as efficient for the remainder. In addition, we
can show that the results of our approach are robust w.r.t. changes in
the intensity threshold parameter. Finally, we provide a comment to a
comparison with gpCAM in this benchmark setting and a corre-
sponding reference to the Supplementary Information.

Results
Problem formulation
From a methodological perspective, we aim to discover an intensity
function i : X ! ½0,1Þ on a rectangular set X � Rn, n∈N, with
coordinates on a certain hyperplane in four-dimensionalQ-E space8. As
an example, Fig. 1a displays an intensity function defined on
X = ½2:3,3:3�× ½2:5,5:5� � R2, where the two-dimensional hyperplane is
spannedby the vector (0, 0, 1) inQ spacewithoffset (1, 1, 0) and energy
transfer (E). For directions in Q space, we use relative lattice units
(r.l.u.), while energy transfer E is measured in milli-electron volts
(meV). Note that, due to restrictions of an instrument, the intensity
function might only be defined on a subset X * � X consisting of all
measurement locations reachable. Formore details on the TAS setting,
we refer to Supplementary Note 1.

The intensity function i is accessed by counting scattered neu-
trons on a detector device for a finite number of measurement loca-
tions x 2 X * yielding noisy observations I+(x) ~ Pois(λ = i(x)). Note that
detector counts are usually normalized by neutron counts on a
monitor device, i.e., the corresponding unit of measurement is
detector counts/(M monitor counts), M∈N. Since Poisson distribu-
tions Pois(λ) with a sufficiently large parameter λ >0 can be
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approximated by a normal distribution N ðλ,λÞ, we assume that

I + ðxÞ= iðxÞ+
ffiffiffiffiffiffiffiffi
iðxÞ

p
η+ , ð1Þ

where η+ ∼N ð0,1Þ.
In the following, we repeatedly refer to “experiments” which are

defined as a sequential collection of intensity observations.

Definition 1. (Experiment). An experiment A is an N-tuple of location-
intensity pairs

A= ððx1,̂i1Þ, . . . ,ðxN ,̂iNÞÞ ð2Þ

where ∣A∣ :¼ N 2 N denotes the number of measurement points, xj 2
X * are measurement locations, and îj are corresponding noisy obser-
vations of an intensity function i at xj.

Since demand for beam time at TAS is high but availability is
limited, the goal of an approach is to perform the most informative
experiments at the lowest possible cost. Beam time use can, for
example, be optimized when excessive counting in uninformative
regions like the background (Fig. 1b) is avoided but focused on regions
of signal (Fig. 1c).

We quantify the benefit of an experiment A by a benefit measure
μ=μðAÞ 2 R and its cost by a cost measure c= cðAÞ 2 R. For now, it
suffices to mention that cost is measured by experimental time (the
time used for an experiment) and benefit is defined by reducing a
relative weighted error between the target intensity function and a

corresponding approximation constructed by the collected intensity
observations. Note that, quantifying benefits this way, their compu-
tation is only possible in a synthetic setting with known intensity
functions (as in our benchmark setting). Real neutron experiments do
not meet this requirement and thus must be evaluated in a more
qualitative way.

In our setting, an approach attempts to conduct an experi-
ment A with highest possible benefit using a given cost budget
C ≥ 0, i.e., it aims to maximize μðAÞwhile ensuring that cðAÞ≤C. The
steps of a corresponding general experiment are given in Box 1.
Line 4 is most important and crucial for both cost and benefit of
the experiment since it decides where to observe intensities, i.e.,
count neutrons, next.

From an algorithmic perspective, if we denote the current step of
an experiment by J∈N, our approach implements the decision for the
next measurement location xJ + 1 2 X * by maximizing an objective
function ϕJ : X * ! R. It balances an acquisition function acqJ : X * !
R and a cost function cJ : X * ! R that both dependon the current step
J andhence canchange from step to step. The acquisition function acqJ
indicates the value of any x 2 X * for improving the benefit of the
experiment whereas the cost function cJ quantifies the costs ofmoving
the instrument axes from the current location xJ 2 X * to x. The metric
d : X * ×X * ! ½0,1Þ used for our particular cost function

cJðxÞ :¼ dðxJ ,xÞ ð3Þ

is formally specified in Supplementary Note 1 (Eq. (11)).

BOX 1

General experiment algorithm

Fig. 1 | Example of an intensity function and a corresponding inefficient and
efficient experiment. For the Q direction, we use relative lattice units (r.l.u.).
a Intensity function on X = ½2:3,3:3�× ½2:5,5:5� along the Q direction (0, 0, 1) with
offset (1, 1, 0) and energy transfer. The color spectrum ranges fromblue (low signal)

to red (high signal). b Inefficient experiment with a large part of measurement
locations (dots) in the background (dark blue area). c More efficient experiment
with most measurement locations in the region of signal.
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Our methodology concentrates on developing a useful acquisi-
tion function as the crucial component of our approach making it
straightforward to find regions of signal. A schematic representation
with general and specific components of our approach in the context
of the general experiment algorithm (Box 1) can be found in Fig. 2.
Specific components necessary to understand the experimental
results are informally introduced below. Details for these specific
components as well as our final algorithm (Box 2), concretizing the
general experiment algorithm, along with all its parameters and their
particular values used are specified in the Methods section.

Log-Gaussian processes for TAS
We briefly describe here why log-Gaussian processes, our central
methodological component, are suitable to identify regions of signal in
a TAS experiment and thus used to specify a reasonable acquisition
function acqJ. Methodological details can be found in the Methods
section.

Although the intensity function is not directly observable due to
measurement noise (Eq. (1)), we aim to approximate it by the mean
function of a log-Gaussian process

IðxÞ :¼ expðFðxÞÞ, ð4Þ

where F is a Gaussian process. That is, after J steps, we fit logarithmic
intensity observations to F yielding its posterior mean and variance
function denoted bymJ and σ2

J , respectively. The acquisition function
is then defined as the uncertainty of I given by its posterior standard
deviation, i.e.,

acqJðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðexpðσ2

J ðxÞÞ � 1Þ � ðexpð2mJðxÞ+ σ2
J ðxÞÞÞ

q
: ð5Þ

Observe the crucial detail that mJ appears exponentially in this func-
tion which is the main reason why our approach is based on log-
Gaussian processes. A posterior log-Gaussian process is thus able to
find regions of signal just through maximizing its uncertainty. As
illustration, regard Fig. 3 displaying the posterior of the Gaussian
process F together with logarithmic intensity observations (Fig. 3a)
and the correspondingposteriorof the log-Gaussian process I (Fig. 3b).

Intensity threshold and background level
Maximizing the acquisition function from Eq. (5) prioritizes regions
with high intensities over regions with low intensities. This poses a
problem when there are multiple signal regions with intensities of
different magnitudes (Supplementary Fig. 1a). Indeed, measurement
points are mainly placed in regions with higher intensities whereas
regions with less signal are neglected (Supplementary Fig. 1b). In TAS,
we are interested in each region of signal no matter of which intensity
magnitude. We compensate for this potential problem by introducing

an intensity threshold τ >0 for observed intensities. That is, we trun-
cate the observed intensities to a maximum of τ before fitting (Sup-
plementary Fig. 1c). Consequently, measurement points get more
evenly distributed among all signal regions (Supplementary Fig. 1d)
since their placement is not biased due to large differences in their
intensity values.

As another problem, intensity observations, in neutron experi-
ments, contain background which is not part of the actual signal, i.e.,
even if there is no actual signal at a certain location, we might none-
theless observe a positive intensity there. If our approach does not
compensate for regions of background, itmight not recognize themas
parasitic and hence consider them as regions of weak signal which
potentially yields uninformative measurement points being placed
there. Therefore, we subtract a background level γ∈ [0, τ) from
already threshold-adjusted intensity observations while ensuring a
non-negative value.

In an actual experiment, both, the intensity threshold and the
background level, are estimated by statistics of initial measurement
points which is described in more detail in the Methods section. The
estimation of the intensity threshold however depends on a parameter
β∈ (0, 1] controlling the distinction between regions of strong and
weak signals (Eq. (47)) that needs to be set before starting an experi-
ment. This parameter is already mentioned here as we examine its
impact on our results in the benchmark setting described below.

Neutron experiment
At SINQ (PSI), we investigated a sample of SnTe (tin telluride) in a real
neutron experiment performed at the thermal TAS EIGER32. Our gen-
eral aim is to reproduce known results from [ref. [33, Fig. 1b] using our
approach. Furthermore, we assess the robustness of the experimental
result w.r.t. changes in the parameters for the background level and
the intensity threshold (scenario 1) as well as challenge our approach
using a coarser initialization grid on a modified domain X with no
initial measurement locations directly lying in a region of signal
(scenario 2).

The software implementation of our approach communicates
with the instrument control system NICOS (nicos-controls.org) which
was configured on site. For the experimental setting at the instrument,
we refer to Supplementary Note 2.

As mentioned, the benefit measure used for benchmarking,
involving a known target intensity function, is not computable in this
setting of a neutron experiment due to experimental artefacts like
background and noise. We, therefore, evaluate the results of our
approach in amore qualitative way for this experiment. Also, although
the costs for moving the instrument axes contribute to the total
experimental time, we do not consider them here for optimizing the
objective function since they are approximately constant across the
domain X .

For scenario 1, we adopt the setting from the original results [ref.
[33, Fig. 1b] which, in our context, means to investigate intensities on
X = ½0,2�× ½2,12:4� along the vector (1, 1, 0) inQ space with offset (0, 0,
3) and energy transfer. Initially, we performed measurements in a
conventional mode for reference, i.e., we mapped X with a grid of 11
columns containing 27 measurement points each (bottom row in
Fig. 4). These measurements were arranged in columns from bottom
to top, i.e., from low to high energies, and from left to right, i.e., from
small to large values for the coordinate along the vector in Q space.

A direct comparison with our approach would put this mapping
mode in disadvantage since its total experimental time could have
been spent more efficiently. For this reason, the approach that we
eventually take for comparison, the grid approach (top row in Fig. 4),
takes the measurement points from the mapping mode but changes
their order into four stages I-IV (Supplementary Fig. 2a–d). The first
stage is from bottom to top and from left to right but only consists of
every other grid point on both axes. The second stage is again from

Fig. 2 | Schematic representation of our approach in the context of the general
experiment algorithm. The general components (solid line boxes) are composed
of the specific components (dashed line boxes) which mainly form our
methodology.
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bottom to top but from right to left and also consists only of every
other gridpoint onboth axes. The third and fourth stage are analogous
but consist of the remaining grid points that were skipped in the first
two stages. With this order, the grid approach can observe intensities
on each region ofX * already after the first stage and hence can acquire
more information in a faster way as with the conventional order.

We ran our approach in the default setting (Table 1), i.e., with
automatically computed background level and intensity threshold, as
well as with two alternative pairs of corresponding parameter values
manually set in order to study the robustness of the results. In the
default setting (row 2 in Fig. 4), the background level and intensity
threshold were computed to γ0 = 58 and τ0 = 94.5, respectively. To
study the robustness of these results w.r.t. changes in the intensity
threshold, the parameters for the first alternative (row 3 in Fig. 4) were
set to γ1 = γ0 and τ1 = 130. The second alternative (row 4 in Fig. 4), for
studying the robustness w.r.t. changes in the background level, was
configured with γ2 = 30 and τ2 = τ0. Eventually, the cost budget C for
each instance of our approach was determined by the total experi-
mental time of the grid approach which was ~11.5 hours. Each respec-
tive initialization with the same grid of 61 measurement points took
~2.9 h of experimental time. The results displayed in Fig. 4 show that,
after initialization, our approach places measurement points mainly in
regions of signal in all three settings. The grid approach, in contrast,
has observed intensities at a considerable amount of uninformative
measurement locations. Note that the evolution of the experiments
related to the three different settings of our approach can be seen in
Supplementary Movies 1-3.

In scenario 2, we tried to challenge our approach with a more
difficult initial setting. The initialization grid in scenario 1 (triangles in
Fig. 4) indeed beneficially lies on an axis of symmetry of the intensity
function. Also, partly as a consequence, some initial measurements
points are already located in regions of signal. From a methodological
perspective, it is interesting to investigate how our approach behaves
after unfavorable initialization, i.e., if almost all initial intensity obser-
vations are lying in the background and hence almost no useful initial
information is available. Hence, we reduced the number of initial
measurement points from 61 to 25 and modified the domain to
X = ½0:2,2�× ½2,16� to break the axis of symmetry and measure larger
energy transfers (Fig. 5a). Estimating the background level and inten-
sity threshold is not reasonable in this setting since the amount of
initial information is too little. Therefore, we manually set γ = 50 and
τ = 80, respectively. The cost budget C for our approach was not set
explicitly here. In fact,we stopped the experimentmanually after ~7.3 h
of total experimental time, with ~1.1 h spent on initialization with the
modified grid. The result is depicted in Fig. 5b. It shows that, even in
this challenging situation, our approach keeps making reasonable
decisions onmeasurement locations. The evolution of the experiment
related to this scenario can be seen in Supplementary Movie 4.

Benchmark
This section shows results of a benchmark on several two-dimensional
(i.e., n = 2) test case intensity functions (Supplementary Fig. 3) as a
quantitative proof of concept. The benchmarking procedure quanti-
fies the performance of an approach by how much benefit it is able to

BOX 2

Final algorithm
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Fig. 4 | Results for scenario 1. For the Q direction, we use relative lattice units
(r.l.u.). Each row displays the results of a certain approach. The columns indicate
the four stages (I-IV)of the grid approach in the top row (a–d). Rows2-4 correspond
to results of our approach in three different settings. Triangles represent the
initialization grid and dots show locations of intensity observations autonomously

placedbyour approach. Row2 (e–h) corresponds to thedefault setting (γ0 = 58and
τ0 = 94.5 were computed automatically).Manually changing the intensity threshold
to τ1 = 130 (with γ1 = γ0) leads to results depicted in row 3 (i–l). Row 4 (m–p) shows
results after changing thebackground level to γ2 = 30 (with τ2 = τ0). Thebottom row
(q–t) shows the mapping in its conventional order for completeness.

Fig. 3 | Transformation of a Gaussian process to a corresponding log-Gaussian
process. The one-dimensional example intensity function i and its logarithm are
displayed with dashed orange lines. a Gaussian process with observations (blue
dots) of log i and its uncertainties (light blue area) around its mean function (solid

blue line). b Corresponding log-Gaussian process. As expected from Eq. (5), max-
imizing the uncertainty of the log-Gaussian process enables to find regions of
signal.
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acquire for certain costbudgets in the context of predefined test cases.
We briefly describe its setting in the following paragraph. For more
details, we refer to the original work34.

A test case mainly includes an intensity function defined on a
certain set X and a synthetic TAS used for moving on X * with certain
velocities and observing intensities. Asmentioned, the cost measure is
chosen to be the experimental time used, i.e., the sum of cumulative
counting time and cumulative time for moving instrument axes. The
benefit measure is defined by a relative weighted L2 approximation
error between the target intensity function and a linear interpolation
î= îðAÞ using observed intensities from experiments A. It encodes the
fact that a TAS experimenter is more interested in regions of signal
than in the background which suggests to use i itself as a weighting
function. However, an important constraint, which is controlled by a
benchmark intensity threshold τ* > 0 truncating weights to

iτ* ðxÞ :¼ minfiðxÞ,τ*g, ð6Þ

as similarly described for the intensity threshold of our approach, is
that separate regions of signal with different magnitudes of intensity
might be equally interesting. Formally, we define

μðAÞ :¼ ∣∣i� îðAÞ∣∣
∣∣i∣∣

, ð7Þ

where k � k = k �kL2ðX * ,ρi,τ* Þ
for the weighting function

ρi,τ* ðxÞ :¼
iτ* ðxÞR

X * iτ* ðx0Þ dx0 : ð8Þ

For each test case, benefits are measured for several ascending cost
budgets, called “milestone values”, to demonstrate the evolution of
performance over time. We note that this synthetic setting includes
neither background nor measurement noise as both are artefacts of
real neutron experiments.

We run the benchmarking procedure with three approaches for
comparison:
1. random approach,
2. grid approach,
3. our approach with different values for the intensity threshold

parameter β.

The random approach places intensity observations uniformly at
random in X *. The grid approach is adopted from the section on the
neutron experiment but using a square grid of dimension P × P, P∈N.

For our approach, we set a zero background level, i.e., γ =0,
manually since background is not included in this synthetic setting.
Our approach is run with four variations of the intensity threshold
parameter β (Eq. (47)) in order to study corresponding sensitivities of
the benchmark results.

The specific benchmarking procedure involves four milestone
values according to the four stages (I-IV) of the grid approach, i.e., the
m-th milestone value represents the experimental time needed to
complete stage m∈ {I, II, III, IV}. Observe that they depend on the
particular test case. The specificmilestone values used are indicated in
Supplementary Note 3. The number of columns/rows P for the grid
approach is chosen to be the maximum number such that the corre-
sponding experimental time for performing an experiment in the
described order does not exceed 9 hours.

Since both the random and our approach contain stochastic ele-
ments, we perform a number of 100 repeated runs with different
random seeds for each test case in order to see the variability of their
results.

The results for each test case along with its corresponding
intensity function are shown in Fig. 6. Our approach has, on median
average, performed significantly better than the random and grid
approach in most test cases. Furthermore, its mostly thin and con-
gruent shapes of variability (light color areas) demonstrate its repro-
ducibility and its robustness w.r.t. changes in the intensity threshold
parameter β. Examples of particular experiments performed by our
approach are additionally provided in Supplementary Fig. 4 for each
test case.

A well-formulated and sustainable comparison of our approach
with gpCAM in this benchmark setting is currently difficult to imple-
ment because, to the best of our knowledge, gpCAM does not specify
how to choose its main parameter, the acquisition function, in the TAS
setting. In this situation, where relevant information is missing, it
would be inappropriate to compare the two approaches at this point.
We have therefore decided to provide a comparison that is currently
possible, i.e., based on all the information available to us about
gpCAM, in Supplementary Note 4. The acquisition function used there
is chosen to be the same as that used for the neutron experiment at the
TAS ThALES (ILL) [ref. 11, Eq. (6)].

Table 1 | Default parameter values used for the final algorithm

Parameter Nrow Δrel
max Δabs

min lmax β NH H Nmin
KO Nmax

KO kKO εKO δ− δ+

Value 11 0.5 15 6 0.5 100 ½10�3,102�3 25 75 9 0.025 10−3 1

Fig. 5 | Results for scenario 2. For the Q direction, we use relative lattice units (r.l.u.). a Reduced number of initial measurement points (triangles) in a modified domain
providing almost no initial information about the intensity function. b Intensity observations (dots) autonomously placed after the uninformative initialization.
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Discussion
The results of the neutron experiment demonstrate the benefits of our
approach. Indeed, in scenario 1 (Fig. 4), our approach identifies regions
of strong as well as of weak signal in each setting and even finds iso-
lated relevant signals of small shape at the edge repeatedly. Therefore,
for this experimental setting, the results are shown to be robust w.r.t.
changes in the estimated background level and intensity threshold,
whichweview as an important outcomeof this experiment. The choice
of these parameters is however directly reflected in the placement of
measurement points which indicates a certain aspect of interpret-
ability and explainability30,31 of our approach. An intensity threshold
higher in value namely leads tomeasurement points that are placed on
a thinner branch of signal (row 3 in Fig. 4), whereas as a lower back-
ground level yieldsmore exploratory behaviour, with a risk tomeasure
in regions of background from time to time (row 4 in Fig. 4). Addi-
tionally, note that a smaller intensity threshold results inmeasurement
points also being placed in regions of high intensity gradient.

Furthermore, in each setting, our approach (rows 2–4 in Fig. 4) has
significantly fewer measurement points in the background compared
to the grid approach (top row in Fig. 4) as expected and thus uses
experimental time more efficiently. The grid approach additionally
does not cover small signal regions at the edge. A simulated intensity
between the two regions of signal on the right [ref. 33, Fig. 1c] is not
seenbyour approachwhich is, however, in agreementwith theoriginal
experiment [ref. 33, Fig. 1b]. In situations like this, a human experi-
menter can focus on such details and place additional measurement
points manually, if necessary.

When applyingGPR,weusea commonGaussian kernel asdetailed
in the Methods section. The (logarithm of the) intensity function from

Fig. 4 however violates the stationarity of this kernel. Indeed, using a
stationary kernel assumes homogeneous statistical behaviour of the
intensity function across the entire domainX which is not the case for
our particular scenario. The length scale along the E axis, for instance,
is differing for different values on the Q axis. In the middle of the Q
axis, the length scale is certainly larger than near its edges. Note that
the length scale along the Q axis is also non-stationary. These dis-
crepancies are one of the main reasons for our choice of the material
SnTe and the setting mentioned above since it provides an opportu-
nity to demonstrate that a stationary kernel, which is computationally
substantially cheaper than non-stationary kernels, is sufficient for
identifying regions of signal and hence for performing efficient
experiments.

In scenario 2 (Fig. 5), we challenged our approach with a difficult
setting. Although the initializationgrid and the domainwereorganized
such that no initial measurement point is located in a region of signal,
and hence the approach is initialized with little useful information, its
behaviour stays reasonable. It namely keeps placing measurements in
regions of signal and can still identify the small region with strong
signal on the bottom right. However, the signal region in themiddle of
the domain is not fully identified, which can be explained by the rela-
tively short experimental time (7.3 hours) as well as by the stationarity
of the kernel since the sparse data suggest a short length scale along
the E axis leading to the assumption of lower function values in an
actual region of signal.

Note that the reduced amount of initial measurement points in
scenario 2 is only applied for the purpose of challenging our approach
and a demonstration of its robustness. In productive operation, how-
ever, we stay with the larger initialization grid from scenario 1 since

Fig. 6 | Benchmark results. For each approach, every subfigure (a–t) plots the
decay of a relative approximation error (Eq. (7)) between the target intensity
function of the corresponding test case (top right corners) and a linear interpola-
tion of collected intensity observations for four milestone values (symbols) which

are determined by the four stages (I-IV) of the grid approach. The solid lines show
medians of the resulting benefit values, whereas the light color areas with dashed
boundaries indicate the range between their minimum and maximum to visualize
their variability caused by stochastic elements.
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placing some measurements in regions of background for a proper
determination of the same is a valuable step during an experiment
providing relevant information for the experimenter. Fortunately, this
mostly leads to a sufficiently good initialization of our approach,
despite using a common stationary kernel.

For further results of neutron experiments in the setting from
scenario 1 as well as from an additional scenario (scenario 3) that
investigated another phonon of SnTe in the default setting of our
approach, we refer to Supplementary Note 5.

The benchmark results (Fig. 6), as a proof of concept, confirm the
outcomes of the neutron experiment quantitatively in a synthetic
setting. Our approach shows a better performance, measured by a
relative weighted approximation error (Eq. (7)) between a target
intensity function and a linear interpolation of collected intensity
observations, compared to the random and grid approach for all test
cases. The improvements are especially substantial for target intensity
functions with smaller regions of signal (Fig. 6a–q). For intensity
functions that cover a substantial part of the domain X (Fig. 6r–t), the
competing approaches are also able to place intensity observations in
regions of signal early during the experiment and hence it is difficult
for any approach to demonstrate its benefit in these scenarios.

The variability in the results of our approach containing stochastic
elements, quantified by the median of benefit values and the range
between their minimum and maximum, is shown to be small for most
test cases and acceptable for the remainder. Our approach can thus be
considered reliable with reproducible results despite starting with a
different sequence of pseudo-random numbers for each run.

Moreover, the benchmark results indicate that our approach is
robust w.r.t. changes in the intensity threshold. The four variations of
the corresponding controlling parameter β (Eq. (47)) yield similar
results formost test cases. It should be noted, however, that the use of
a reasonable value for β in real neutron experiments is nevertheless
important. Indeed, it not only eliminates the effect of outliers in initial
intensities but also, recall, allows to control the width of signal bran-
ches onwhich themeasurement points are placed, and thus the extent
to which regions of high gradient are preferred over those of peak
intensity.

In addition to the results of the neutron experiment, the particular
experiments performed by our approach in the benchmark setting
(Supplementary Fig. 4) confirm that it, after initialization, autono-
mously places a large part of measurement points in regions of signal
for a variety of different intensity distributions.

As a conclusion, in the previous sections, we demonstrated that
our approach indeed improves the efficiency of TAS experiments and
allows to make better use of the experimenter’s time. It maximizes an
acquisition function given by approximation uncertainties of a log-
Gaussian process in order to find informativemeasurement points and
not waste experimental time in regions such as the background. Our
robust and reproducible results suggest that it is in fact capable of
autonomously obtaining a rapid overview of intensity distributions in
various settings.

In a real neutron experiment at the thermal TAS EIGER, our
approach repeatedly demonstrated its ability to identify regions of
signal successfully leading to a more efficient use of beam time at a
neutron source of a large-scale research facility. It was additionally
shown that it keeps making reasonable decisions even when being
initialized with little information. Furthermore, substantial perfor-
mance improvements, in comparisonwith two competing approaches,
and their robustness were quantified in a synthetic benchmark setting
for numerous test cases.

Nevertheless, we feel that the automated estimation of algo-
rithmic parameters (background level and intensity threshold) from
statistics of initial measurements, despite its good performance in
each of the settings discussed, needs to be confirmed in future
experiments.

Our approach, so far, solves the problem of where to measure.
However, an interesting topic of future research is the major question
of how tomeasure at a certain location. Counting times were assumed
to be constant in this work and thus promise to be another possibility
to save experimental time if determined autonomously in an advan-
tageousway. Indeed, large counting times in regions of high intensities
and background are actually not needed since the necessary infor-
mation can also be collected in less time. Experimenters, in contrast,
are often more interested in weaker signals and their comprehensive
measurement to reduce corresponding error bars.

Moreover, although using a common stationary kernel for GPR
has proven to be sufficient for identifying regions of signal, we regard
the application of non-stationary kernels with input-dependent
hyperparameters35–38, e.g., length scales, also modelled by log-
Gaussian processes, as another interesting option for further
investigations.

Finally, a certainly more involved topic for future research is the
parameter estimation for physical models such as Hamiltonians, if
available, in a Bayesian framework using data collected by an auton-
omous approach. Once this estimation is possible, a natural follow-up
question is how our approach, which is completely model-agnostic,
i.e., it does not take into account any information from a physical
model, compares to a model-aware approach in terms of reducing
uncertainties of parameters to be estimated while minimizing
experimental time.

Methods
Our approach is methodologically based on Gaussian process regres-
sion (GPR)29, a Bayesian technique for estimating and approximating
functions from pointwise data that allows to quantify uncertainties on
the approximation itself in the form of normal distributions. We fit a
Gaussian process to logarithmic intensity observations and expo-
nentiate the resulting posterior process yielding a log-Gaussian pro-
cess. As mentioned, this transformation causes approximation
uncertainties to be higher in regions of signal which in turn can be
exploited for the definition of a useful acquisition function in the TAS
setting.

Gaussian process regression
We generally intend to approximate a function of interest f : X ! R,
whichbecomes the logarithmof the intensity function later.UsingGPR
for this, we have to assume that f is a realization of a Gaussian pro-
cess F.

Definition 2. (Gaussian process). A Gaussian process

F ∼GPðmðxÞ,κθðx,x0ÞÞ ð9Þ

with (prior) mean function m : X ! R and parameterized kernel
function κθ : X ×X ! ½0,1Þ is a collection of random variables
ðFðxÞÞx2X such that for any finite amount of evaluation points xð‘Þ 2 X ,
ℓ = 1,…, L, L∈N, the randomvariables F(ℓ): = F(x(ℓ)) follow a joint normal
distribution, i.e.,

ðF ð1Þ, . . . ,F ðLÞÞ> ∼N ðm,KÞ, ð10Þ

where

m= ðmðxð1ÞÞ, . . . ,mðxðLÞÞÞ> 2 RL and K‘1 ,‘2
= κθðxð‘1Þ,xð‘2ÞÞ≥0: ð11Þ

Note that, for each x 2 X , it particularly holds that

FðxÞ∼N ðmðxÞ,σ2ðxÞÞ, ð12Þ

where σ2(x) :=Var(F(x)) = κθ(x, x) ≥ 0 is the (prior) variance function.
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The kernel function κθ is an important component in GPR since it
describes the correlation structure between random variables F(x).
Hence, it enables to include assumptions on realizations of F and
determines function properties like regularity, periodicity, symmetry,
etc. In practice, it is crucial to choose a kernel function that matches
with properties of the function of interest f.

We acquire knowledge on f through noisy observations f̂ j at
locations xj 2 X * (Eq. (2)) in our context. Therefore, for j = 1,…, J, we
set

F̂ðxjÞ= FðxjÞ+ eðxjÞηj , ð13Þ

where ηj ∼N ð0,1Þ are i.i.d. random variables independent of F(xj) and
e(x) > 0 denotes the noise standard deviation at x 2 X . Note that F̂ðxjÞ
is a normally distributed random variable.

For clear notation, we define

XJ :¼
∣ ∣
x1 � � � xJ

∣ ∣

0
B@

1
CA 2 Rn× J and f̂ J :¼ ð f̂ 1, . . . , f̂ JÞ

> 2 RJ , ð14Þ

and let

hðXJÞ :¼ ðhðx1Þ, . . . ,hðxJÞÞ> 2 RJ ð15Þ

for any function h : X ! R.
After observations have been made, we are interested in the

posterior, i.e., conditional, Gaussian process. It holds that

FðxÞ ∣ ðF̂ðXJÞ= f̂ JÞ∼N ðmJðxÞ,σ2
J ðxÞÞ ð16Þ

with the posterior mean function

mJðxÞ=mðxÞ+ κJðx,XJÞ> κJðXJ ,XJÞ+diagðeðXJÞÞ2
h i�1

ðf̂ J �mðXJÞÞ ð17Þ

and the posterior variance function

σ2
J ðxÞ= σ2ðxÞ � κJðx,XJÞ> κJðXJ ,XJÞ+diagðeðXJÞÞ2

h i�1
κJðx,XJÞ: ð18Þ

If necessary, the hyperparameters θJ of the kernel function κJ :¼ κθJ
can be optimized using data f̂ J . For this, we compute θJ such that the
logarithm of the so-called marginal likelihood, i.e.,

logρF̂ðXJ Þðf̂ JÞ= log
Z

RJ
ρF̂ðXJ Þ∣FðXJ Þðf̂ J ∣f ÞρFðXJ Þðf Þ df

� �

= � 1
2
ðf̂ J �mðXJ ÞÞ

>
κJðXJ ,XJ Þ+diagðeðXJÞÞ2
h i�1

ðf̂ J �mðXJ ÞÞ

� 1
2
log∣κJðXJ ,XJ Þ+diagðeðXJÞÞ2∣�

n
2
log2π,

ð19Þ

is maximized. A suitable optimizer is specified below. Note that the
analytical expression for the integral in Eq. (19) is only feasible due to
the normal distributions involved. However, the computational cost of
GPR is often hidden in this kernel optimization step since it requires
solving linear systems and computing determinants [ref. 29, Sec. 2.3].
An appropriate criterion for stopping kernel optimizations that
detects stagnant hyperparameters during an experiment is therefore
provided below. Furthermore, observe that, for a fixed non-optimized
kernel, σ2

J does not depend on observations f̂ J but only on locations XJ
they have been made at.

The posterior mean function mJ : X ! R, incorporating knowl-
edge on J noisy observations of the function of interest f, can now be
used as an approximation to f, whereas the posterior variance function

σ2
J : X ! ½0,1Þ quantifies the corresponding uncertainties (Supple-

mentary Fig. 5). Note that σ2
J ðxÞ<σ2ðxÞ for each x 2 X since

½κJðXJ ,XJÞ+diagðeðXJÞÞ2�
�1

is positive-definite. Since we have m ≡0
later, we can further simplify Eq. (17) to

mJðxÞ= κJðx,XJÞ> κJðXJ ,XJÞ+diagðeðXJÞÞ2
h i�1

f̂ J : ð20Þ

Log-Gaussian processes
The Gaussian process, which is fitted to logarithmic intensity
observations in our approach, is exponentiated to the original linear
scale in this section to become log-Gaussian. Before describing
details of its application in the TAS setting, we first give the relevant
definitions and mention a technical detail that will be
important below.

Definition 3. (Log-normal distribution39). Let η∼N ð0,1Þ. Then, for
parameters μ∈R and σ > 0, the random variable

Z = expðμ+ σηÞ ð21Þ

is said to follow a log-normal distribution, denoted by Z ∼ log-N ðμ,σ2Þ.
The mean and variance of a log-normally distributed random

variable Z are given by

E½Z �= exp μ+
σ2

2

� �
and VarðZ Þ= ðexpðσ2Þ � 1Þ � expð2μ+ σ2Þ:

ð22Þ

Below, we look at the noise distribution of log-Gaussian processes
in order to satisfy our assumption on intensity observations to
contain normally distributed noise (Eq. (1)). The following mathe-
matical result is fundamental for this as it establishes a link between
normal and log-normal distributions. It is proved in Supplemen-
tary Note 6.

Proposition 1. (Small variance limit for normalized log-normally dis-
tributed random variables) Let Z be a log-normally distributed random
variable as in Eq. (21) and define the corresponding normalized ran-
dom variable

Z :¼ Z � E½Z �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZ Þ

p : ð23Þ

Then, the random variable Z converges pointwise to η as σ→0+, i.e.,

Z ðωÞ ! ηðωÞ as σ ! 0+ ð24Þ

for each ω∈Ω, where Ω denotes the sample space.
As mentioned, the exponentiation of a Gaussian process is log-

Gaussian, by definition.

Definition 4. (Log-Gaussian process). Let F be a Gaussian process.
Then, the random process ðIðxÞÞx2X with

IðxÞ= expðFðxÞÞ ð25Þ

is called a log-Gaussian process.
Using Eqs. (17) and (18), it immediately follows for the posterior

log-Gaussian process that

IðxÞ ∣ ðF̂ðXJÞ= f̂ JÞ∼ log�N ðmJðxÞ,σ2
J ðxÞÞ: ð26Þ
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In particular, its posterior mean function is

E½IðxÞ ∣ F̂ðXJÞ= f̂ J �= exp mJðxÞ+
σ2
J ðxÞ
2

 !
ð27Þ

and its posterior variance function becomes

VarðIðxÞ ∣ F̂ðXJÞ= f̂ JÞ= ðexpðσ2
J ðxÞÞ � 1Þ � expð2mJðxÞ+ σ2

J ðxÞÞ: ð28Þ

Application to TAS
Log-Gaussian processes for TAS. In the context of our methodology
from the previous sections, we choose the function of interest to be
the logarithm of the intensity function from the TAS setting (Supple-
mentary Note 1), i.e.,

f = log i: ð29Þ

If we define

F̂ = : log Î, ð30Þ

relating to Eq. (25), i.e., F = log I, Eq. (13) gives

log ÎðxjÞ= log IðxjÞ+ eðxjÞηj

() ÎðxjÞ= IðxjÞ � expðeðxjÞηjÞ
ð31Þ

for measurement locations xj 2 X *. Note that, in contrast to the pro-
cess F̂ containing additive normally distributed noise (Eq. (13)), the
noise of Î is multiplicative and log-normal, i.e.,

ÎðxjÞ ∣ ðIðxjÞ= iðxjÞÞ= iðxjÞ � expðeðxjÞηjÞ: ð32Þ

However, referring to Eq. (1), the physical assumption on the noise of
intensity observations I+ is to be additive and normally distributed, i.e.,

I + ðxjÞ ∣ ðIðxjÞ= iðxjÞÞ= iðxjÞ+ e+ ðxjÞη+
j , ð33Þ

where η+
j ∼N ð0,1Þ and e + ðxjÞ=

ffiffiffiffiffiffiffiffiffi
iðxjÞ

q
. Fortunately, the actual

deviation of the two different noise distributions is negligible for
sufficiently large intensities i(xj) as the following explanations
demonstrate.

As a first step, let us determine e(xj) from Eq. (31) such that the
variances of both noise distributions are equal, i.e.,

Varð̂IðxjÞ ∣ IðxjÞ= iðxjÞÞ=VarðI + ðxjÞ ∣ IðxjÞ= iðxjÞÞ
() iðxjÞ2 � ðexpðeðxjÞ2Þ � 1Þ � expðeðxjÞ2Þ= iðxjÞ,

ð34Þ

which yields

eðxjÞ2 = log
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=iðxjÞ+ 1

q
+ 1

� �� �
: ð35Þ

Note that the intensity term i(xj) in Eq. (35) is not known in practice but
can be replaced by the corresponding observation îj≈iðxjÞ.

Since we aim to apply the small variance limit for log-normally
distributed random variables from above (Eq. (24)), we set

Z = ÎðxjÞ ∣ ðIðxjÞ= iðxjÞÞ∼ log�N ðμ,σ2Þ ð36Þ

with

μ= log iðxjÞ and σ2 = log
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=iðxjÞ+ 1

q
+ 1

� �� �
: ð37Þ

Observe that

σ ! 0+ as iðxjÞ ! 1: ð38Þ

Furthermore, note that the term μ also depends on the limit i(xj)→∞
and hence on σ→0+, in contrast to the setting above, but disappears in
the calculations due to cancellations (see proof in Supplementary
Note 6). Using the small variance limit, we immediately get the fol-
lowing result (Supplementary Fig. 6).

Proposition 2. The normalization of the noise random variable
ÎðxjÞ ∣ ðIðxjÞ= iðxjÞÞ converges pointwise to η as i(xj)→∞. In particular, it
converges in distribution to a standard normal distribution.

If we set

îJ :¼ ð̂i1, . . . ,̂iJÞ
> 2 0,1½ ÞJ , ð39Þ

the acquisition function acqJ of our approach can now be defined as

acqJðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðIðxÞ ∣ ÎðXJÞ= îJÞ

q
, ð40Þ

which eventually gives Eq. (5) through Eq. (28).

Intensity threshold and background level. The intensity threshold τ
and background level γ have already been introduced informally in the
Results section. Taking both into account as explained, the log-
Gaussian process actually aims to approximate the modified intensity
function

iγ,τ ðxÞ :¼ maxfminfiðxÞ,τg � γ,0g: ð41Þ

Observe that, by regarding intensity observations adjusted according
to Eq. (41), the assumption of their noise being normally distributed is
violated in general as their noise distribution is asymmetric. In parti-
cular, if i(xj) substantially exceeds the intensity threshold τ, the dis-
tribution gets rather concentrated at τ and thus small in variance. We,
however, do assume noise on adjusted intensities as if they were
observed so without adjusting. This does not change the expected
behaviour of getting a useful acquisition function but even ensures
numerical stability since noise regularizes the computational problem
of solving linear systems in GPR.

It remains to explain how we seek to compute suitable values for
the background level and intensity threshold without knowing the
intensity function. We estimate γ = γðA0Þ and τ = τðA0Þ by statistics of
J0∈N initial measurement points

A0 :¼ ððx1 ,̂i1Þ, . . . ,ðxJ0
,̂iJ0 ÞÞ ð42Þ

collected to initialize our approach. The arrangement of initial mea-
surement locations is specified below.

For computing the background level γ, we divide the initial
intensity observations sorted in ascending order into 10 buckets

Bl :¼ f̂ij ∣ Dl�1<̂ij ≤Dl ,j = 1, . . . ,J0g, l = 1, . . . ,10, ð43Þ

where Dl, l = 1,…,9, denotes the l-th decile of initial intensity observa-
tions, D0 := −∞, and D10 := +∞. The relative and absolute differences of
the bucket medians, i.e.,

Δrel
l :¼ ml + 1 �ml

ml
and Δabs

l :¼ ml + 1 �ml ð44Þ

with ml :=median(Bl), l = 1,…,9, are taken to select the first bucket
medianwhich has a sufficiently large (relative and absolute) difference
to its successor provided the corresponding decile does not exceed a
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maximum decile. That is, we define

l* :¼ min l 2 f1, . . . ,9g ∣ Δrel
l >Δrel

max ^ Δabs
l ≥Δabs

min

n o
∪ flmaxg

� �
ð45Þ

for parameters Δrel
max >0, Δabs

min >0, and lmax 2 f1, . . . ,9g and set the
function for computing the background level to

γðA0Þ :¼ ml* : ð46Þ
The intensity threshold τ is then selected as a value between the

background level γ and the maximum bucket median m10 on a linear
scale by the parameter β that was introduced in the Results section.
Therefore, we define

τðA0Þ :¼ γðA0Þ+ β � ðm10 � γðA0ÞÞ: ð47Þ

Note that this definition is, by the meaning of m10, robust to outliers
in A0.

Initial measurement locations. The initial measurement locations
x1, . . . ,xJ0

2 X * are deterministically arranged as a certain grid. It is
chosen to be a variant of a regular grid in which every other row (or
column) of points is shifted to the center of surrounding points
(Supplementary Fig. 7). The intensity observations start in the bottom
left corner of X * and then continue row by row. Initial locations not
reachable by the instrument, i.e., outside ofX *, are skipped. If all initial
locations are reachable, we use a total number of

J0 :¼ N2
row + 1
2

, ð48Þ

where Nrow∈N is the odd number of rows in the grid.

Consumed areas. As placing measurement points too close to each
other has limited benefit for an efficient experiment, we mark areas
around eachmeasurement location xj 2 X * as “consumed” and ignore
them as potential locations for new measurement points. Since the
resolution function of a TAS yields ellipsoids in Q-E space, it is natural
to consider consumed areas in X * as ellipses. An ellipse with center
point xj 2 X * is defined as

EðxjÞ :¼ fx 2 Rn ∣ ðx� xjÞ>EðxjÞðx� xjÞ≤ 1g ð49Þ

for a matrix-valued function

EðxjÞ=UðxjÞRðxjÞ�>RðxjÞ�1UðxjÞ> =UðxjÞRðxjÞ�2UðxjÞ> 2 Rn ×n, ð50Þ

where U(xj)∈Rn×n is a rotation matrix and R(xj) =
diag(r1(xj),…, rn(xj))∈Rn×n with rk >0. Then, the union of all ellipses at
step J is denoted by

EJ :¼
[J

j = 1
EðxjÞ: ð51Þ

It is included in the objective function ϕJ which is part of the final
algorithm.

Final algorithm
Incorporating all of the discussed methodological components, the
steps for the final algorithm are listed in Box 2. Required components
that have not been mentioned above are described in the next para-
graphs. The algorithmic setting, i.e., particular values for parameters of
the algorithm, is specified below.

Objective function. Recall that the objective function ϕJ, which is
supposed to indicate the next measurement location, is composed of

the acquisition function acqJ from Eq. (40) and the cost function cJ
from Eq. (3). In order to avoid distorting the objective function with
physical units of time, we use the normalized cost function

cJðxÞ :¼
cJðxÞ
c0

, ð52Þ

where c0 > 0 is a normalizing cost value and set to the maximum dis-
tance between two initial measurement locations w.r.t. the metric d,
i.e.,

c0 :¼ max
1≤ j,j0 ≤ J0

dðxj,xj0 Þ: ð53Þ

The objective function is then defined as

ϕJðxÞ :¼
acqJðxÞ=ðcJðxÞ+ 1Þ if x=2EJ ,

�1 otherwise:

�
ð54Þ

Observe that ϕJ excludes consumed areas in EJ as potential locations
for new observations. Outside EJ , it reflects the fact that the objective
function should increase if the cost function decreases and vice versa.
Also, if there were no costs present, i.e., cJ ≡0, thenϕJ = acqJ outside EJ .

Kernel and optimizer for hyperparameters. The parameterized ker-
nel κθ is chosen to be the Gaussian (or radial basis function, RBF)
kernel, i.e.,

κθðx,x0Þ :¼ σ2 exp � 1
2
ðx� x0Þ>Λ�1ðx� x0Þ

� �
, ð55Þ

where σ2 > 0 and Λ = diag(λ1,…, λn)∈Rn×n for length scales λk ≥ 0.
Hence, the vector of hyperparameters is

θ= ðσ2,λ1, . . . ,λnÞ
> 2 Rn+ 1: ð56Þ

Recall that the kernel is needed for GPR to fit a Gaussian process to the
logarithm of intensity observations. As mentioned above, we compute
optimal hyperparameters bymaximizing the logarithmof themarginal
likelihood (Eq. (19)). Since this optimization problem is non-convex in
general, it might have several local maxima. Instead of a global
optimizer, we run local optimizations starting with NH 2 N different
initial hyperparameter values distributed uniformly at random in a
hypercube H � Rn+ 1 and choose the one with the largest local
maxima. Note that this introduces stochasticity into our approach.

Stopping criterion for kernel optimizations. As kernel optimizations
are computationally the most expensive part of our methodology, it is
reasonable to stop them once a certain criterion is met. The stopping
criterion PKO = PKO(J) is formalized as a predicate, i.e., a boolean-valued
function, depending on step J. If NKO(J)∈N denotes the number of
kernel optimizations performed up until step J, it is defined as

PKOðJÞ :¼ NKOðJÞ>Nmax
KO

_ NKOðJÞ≥Nmin
KO ^ 1

kKO � 1

XJ�1

j = J�kKO + 1

k logðθjÞ � logðθj + 1Þk2
k logðθj + 1Þk2

≤ εKO

0
@

1
A
ð57Þ

for parameters Nmin
KO ,N

max
KO , kKO 2 N such that

2≤ kKO ≤Nmin
KO ≤Nmax

KO ð58Þ

and εKO >0. Informally, this predicate indicates that kernel optimiza-
tions should be stopped as soon as NKO(J) exceeds a given maximum
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number Nmax
KO or if, provided that NKO(J) exceeds a given minimum

number Nmin
KO , the average relative difference of the last kKO hyper-

parameters falls below a given threshold value εKO, i.e., the hyper-
parameters stagnate and do no longer change substantially. Note that,
in Eq. (57), the expressions logðθÞ for the vector of kernel hyperpara-
meters θ= ðσ2,λ1, . . . ,λnÞ

>
from Eq. (56) aremeant componentwise, i.e.,

logðθÞ= ðlogðσ2Þ, logðλ1Þ, . . . , logðλnÞÞ
> 2 Rn+ 1: ð59Þ

Cost measure. Finally, the cost measure c is chosen to represent
experimental time, i.e., the total time needed to carry out an experi-
ment A. Experimental time consists of the cumulative counting time
and the cumulative time for moving the instrument axes. The cumu-
lative counting time is measured by

ccountðAÞ :¼
X∣A∣

j = 1

Tcount,j ð60Þ

where Tcount,j ≥0 denotes the single counting time, i.e., the time spent
for a single intensity observation, at xj. The cost measure for the
cumulative time spent to move the instrument axes is defined as

caxesðAÞ :¼
X∣A∣�1

j = 1

dðxj,xj + 1Þ, ð61Þ

whered is ametric representing the cost formoving fromxj to xj+1. For
details, we refer to Supplementary Note 1 (Eq. (11)). Eventually, we set

cðAÞ :¼ ccountðAÞ+ caxesðAÞ: ð62Þ

For simplicity, the single counting times are assumed tobe constant on
the entire domain X *, i.e., Tcount,j =Tcount ≥0 yielding

ccountðAÞ= ∣A∣ � Tcount: ð63Þ

Degenerate cases
An intensity function that is nearly constant along a certain coordinate
xk in X , i.e., an intrinsically lower-dimensional function, might cause
problems for the Gaussian kernel from Eq. (55) as the corresponding
optimal length scale hyperparameter would be λk =∞. Also, the initial
observations A0 from Eq. (42) might not resolve the main character-
istics of the intensity function sufficiently well and hence pretend it to
be lower-dimensional.

Most degenerate cases can be identified by kernel optimizations
resulting in oneormore length scales that arequite lowor high relative
to the dimensions of X . In general, we assess a length scale parameter
λk as degenerate if it violates

δ� ≤
λk

x +
k � x�k

≤ δ + ð64Þ

for twoparameters0 < δ− < δ+ <∞, where x�k and x +
k denote the limits of

the rectangleX in dimension k. If, after kernel optimization at a certain
step, a length scale parameter is recognized to be degenerate, we
regard the intensity function on a coordinate system rotated by 45∘ in
order to avoid the mentioned problems. Of course, the rotation is
performed only internally and does not affect the original setting.

In n = 2 dimensions, a crystal field excitation, for example, might
inducea lower-dimensional intensity function (Supplementary Fig. 8a).
After rotating the coordinate system, the intensity function becomes
full-dimensional (Supplementary Fig. 8b) allowing non-degenerate
kernel optimizations.

Algorithmic setting
All experiments described in this article are performed in n = 2 dimen-
sions, i.e., X � R2. If not specified otherwise, we use Nrow = 11 rows
corresponding to 61 measurements in the initialization grid (Eq. (48)).
For scenario 2 of the neutron experiment, we use Nrow = 7 rows corre-
sponding to 25 initial measurements. The default parameter values
used for the final algorithm (Box 2) in both experimental settings, i.e.,
the neutron experiment and the benchmark, are specified in Table 1.

Although NICOS is able to consider an instrument’s resolution
function for the computation of matrices E(xj) defining ellipses as
consumed areas, we decided to use ellipses fixed over X * for both, the
neutron experiment and thebenchmark. Thus, the function E (Eq. (50))
is chosen to give circleswithfixed radius r >0on a normalizeddomain,
i.e., U(xj) = I and

rkðxjÞ=
r

x +
k � x�

k

: ð65Þ

We set r =0.02 for the neutron experiment and r = 0.025 for the
benchmark.

Data availability
Source data for figures and movies related to the neutron experiment
or the benchmark are available in the repository at jugit.fz-juelich.de/
ainx/ariane-paper-data.

Code availability
The software implementation of our approach is based on the Gaus-
sianProcessRegressor class from the Python package scikit-learn40. All
results can be reproduced using our code from the repository jugit.fz-
juelich.de/ainx/ariane (commit SHA: c1c31c96). The benchmark results
can be reproduced by using code from the repository jugit.fz-juelich.
de/ainx/base-fork-ariane (commit SHA: 3715a772). It is a fork, adjusted
to our approach, of the benchmark API from jugit.fz-juelich.de/ainx/
base which is part of the mentioned original work on the bench-
marking procedure34.
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