001     1006966
005     20231027114402.0
024 7 _ |a 10.5194/gmd-16-2149-2023
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/34378
|2 Handle
024 7 _ |a WOS:000972780500001
|2 WOS
037 _ _ |a FZJ-2023-01917
082 _ _ |a 550
100 1 _ |a Tesch, Tobias
|0 P:(DE-Juel1)178989
|b 0
|e Corresponding author
245 _ _ |a Causal deep learning models for studying the Earth system
260 _ _ |a Katlenburg-Lindau
|c 2023
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683536339_19928
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Earth is a complex non-linear dynamical system. Despite decades of research and considerable scientific and methodological progress, many processes and relations between Earth system variables remain poorly understood. Current approaches for studying relations in the Earth system rely either on numerical simulations or statistical approaches. However, there are several inherent limitations to existing approaches, including high computational costs, uncertainties in numerical models, strong assumptions about linearity or locality, and the fallacy of correlation and causality. Here, we propose a novel methodology combining deep learning (DL) and principles of causality research in an attempt to overcome these limitations. On the one hand, we employ the recent idea of training and analyzing DL models to gain new scientific insights into relations between input and target variables. On the other hand, we use the fact that a statistical model learns the causal effect of an input variable on a target variable if suitable additional input variables are included. As an illustrative example, we apply the methodology to study soil-moisture–precipitation coupling in ERA5 climate reanalysis data across Europe. We demonstrate that, harnessing the great power and flexibility of DL models, the proposed methodology may yield new scientific insights into complex non-linear and non-local coupling mechanisms in the Earth system.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
|u fzj
700 1 _ |a Garcke, Jochen
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.5194/gmd-16-2149-2023
|g Vol. 16, no. 8, p. 2149 - 2166
|0 PERI:(DE-600)2456725-5
|n 8
|p 2149 - 2166
|t Geoscientific model development
|v 16
|y 2023
|x 1991-959X
856 4 _ |u https://juser.fz-juelich.de/record/1006966/files/Invoice_Helmholtz-PUC-2023-44.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006966/files/gmd-16-2149-2023.pdf
909 C O |o oai:juser.fz-juelich.de:1006966
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178989
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:29:04Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GEOSCI MODEL DEV : 2022
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21