001006968 001__ 1006968
001006968 005__ 20231027114402.0
001006968 0247_ $$2doi$$a10.1088/2058-9565/acbc45
001006968 0247_ $$2Handle$$a2128/34352
001006968 0247_ $$2WOS$$aWOS:000945287400001
001006968 037__ $$aFZJ-2023-01919
001006968 082__ $$a530
001006968 1001_ $$0P:(DE-Juel1)184904$$aCardarelli, Lorenzo$$b0$$eCorresponding author
001006968 245__ $$aAccessing the topological Mott insulator in cold atom quantum simulators with realistic Rydberg dressing
001006968 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2023
001006968 3367_ $$2DRIVER$$aarticle
001006968 3367_ $$2DataCite$$aOutput Types/Journal article
001006968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682492126_30524
001006968 3367_ $$2BibTeX$$aARTICLE
001006968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006968 3367_ $$00$$2EndNote$$aJournal Article
001006968 520__ $$aThe interplay between many-body interactions and the kinetic energy gives rise to rich phase diagrams hosting, among others, interaction-induced topological phases. These phases are characterized by both a local order parameter and a global topological invariant, and can exhibit exotic ground states such as self-trapped polarons and interaction-induced edge states. In this work, we investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices. We consider spinless fermions on a checkerboard lattice, interacting via the tunable-range effective potential induced by the Rydberg dressing. We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation. We furthermore study the stability of the phases with respect to temperature within the mean-field approximation and with respect to quantum fluctuations using the density matrix renormalization group method. Finally, we propose an implementation protocol, and in particular identify attainable regimes of experimental parameters in which the topological properties of the model become accessible. Our work thereby opens a realistic pathway to the outstanding experimental observation of this predicted phase in state-of-the-art cold atom quantum simulators.
001006968 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001006968 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006968 7001_ $$00000-0003-4034-5786$$aJulià-Farré, Sergi$$b1
001006968 7001_ $$00000-0002-0210-7800$$aLewenstein, Maciej$$b2
001006968 7001_ $$00000-0003-4996-2561$$aDauphin, Alexandre$$b3
001006968 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b4
001006968 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/acbc45$$gVol. 8, no. 2, p. 025018 -$$n2$$p025018 -$$tQuantum science and technology$$v8$$x2058-9565$$y2023
001006968 8564_ $$uhttps://juser.fz-juelich.de/record/1006968/files/Cardarelli_2023_Quantum_Sci._Technol._8_025018.pdf$$yOpenAccess
001006968 8767_ $$d2023-04-21$$eHybrid-OA$$jPublish and Read
001006968 909CO $$ooai:juser.fz-juelich.de:1006968$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001006968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184904$$aForschungszentrum Jülich$$b0$$kFZJ
001006968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b4$$kFZJ
001006968 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001006968 9141_ $$y2023
001006968 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006968 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006968 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006968 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001006968 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
001006968 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006968 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
001006968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM SCI TECHNOL : 2022$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001006968 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bQUANTUM SCI TECHNOL : 2022$$d2023-10-27
001006968 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001006968 980__ $$ajournal
001006968 980__ $$aVDB
001006968 980__ $$aUNRESTRICTED
001006968 980__ $$aI:(DE-Juel1)PGI-2-20110106
001006968 980__ $$aAPC
001006968 9801_ $$aAPC
001006968 9801_ $$aFullTexts