001     1006968
005     20231027114402.0
024 7 _ |a 10.1088/2058-9565/acbc45
|2 doi
024 7 _ |a 2128/34352
|2 Handle
024 7 _ |a WOS:000945287400001
|2 WOS
037 _ _ |a FZJ-2023-01919
082 _ _ |a 530
100 1 _ |a Cardarelli, Lorenzo
|0 P:(DE-Juel1)184904
|b 0
|e Corresponding author
245 _ _ |a Accessing the topological Mott insulator in cold atom quantum simulators with realistic Rydberg dressing
260 _ _ |a Philadelphia, PA
|c 2023
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1682492126_30524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interplay between many-body interactions and the kinetic energy gives rise to rich phase diagrams hosting, among others, interaction-induced topological phases. These phases are characterized by both a local order parameter and a global topological invariant, and can exhibit exotic ground states such as self-trapped polarons and interaction-induced edge states. In this work, we investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices. We consider spinless fermions on a checkerboard lattice, interacting via the tunable-range effective potential induced by the Rydberg dressing. We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation. We furthermore study the stability of the phases with respect to temperature within the mean-field approximation and with respect to quantum fluctuations using the density matrix renormalization group method. Finally, we propose an implementation protocol, and in particular identify attainable regimes of experimental parameters in which the topological properties of the model become accessible. Our work thereby opens a realistic pathway to the outstanding experimental observation of this predicted phase in state-of-the-art cold atom quantum simulators.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Julià-Farré, Sergi
|0 0000-0003-4034-5786
|b 1
700 1 _ |a Lewenstein, Maciej
|0 0000-0002-0210-7800
|b 2
700 1 _ |a Dauphin, Alexandre
|0 0000-0003-4996-2561
|b 3
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 4
773 _ _ |a 10.1088/2058-9565/acbc45
|g Vol. 8, no. 2, p. 025018 -
|0 PERI:(DE-600)2906136-2
|n 2
|p 025018 -
|t Quantum science and technology
|v 8
|y 2023
|x 2058-9565
856 4 _ |u https://juser.fz-juelich.de/record/1006968/files/Cardarelli_2023_Quantum_Sci._Technol._8_025018.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006968
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184904
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANTUM SCI TECHNOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b QUANTUM SCI TECHNOL : 2022
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21