001006970 001__ 1006970
001006970 005__ 20231027114402.0
001006970 0247_ $$2doi$$a10.1088/1748-0221/18/04/P04010
001006970 0247_ $$2Handle$$a2128/34347
001006970 0247_ $$2WOS$$aWOS:000986916100003
001006970 037__ $$aFZJ-2023-01921
001006970 082__ $$a610
001006970 1001_ $$0P:(DE-Juel1)190925$$aAwal, A.$$b0$$ufzj
001006970 245__ $$aOptimization of the injection beam line at the Cooler Synchrotron COSY using Bayesian Optimization
001006970 260__ $$aLondon$$bInst. of Physics$$c2023
001006970 3367_ $$2DRIVER$$aarticle
001006970 3367_ $$2DataCite$$aOutput Types/Journal article
001006970 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682404019_28340
001006970 3367_ $$2BibTeX$$aARTICLE
001006970 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006970 3367_ $$00$$2EndNote$$aJournal Article
001006970 520__ $$aThe complex non-linear processes in multi-dimensional parameter spaces, that are typical for an accelerator, are a natural application for machine learning algorithms. This paper reports on the use of Bayesian optimization for the optimization of the Injection Beam Line (IBL) of the Cooler Synchrotron storage ring COSY at the Forschungszentrum Jülich, Germany. Bayesian optimization is a machine learning method that optimizes a continuous objective function using limited observations. The IBL is composed of 15 quadrupoles and 28 steerers. The goal is to increase the beam intensity inside the storage ring. The results showed the effectiveness of the Bayesian optimization in achieving better/faster results compared to manual optimization.
001006970 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
001006970 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006970 7001_ $$0P:(DE-Juel1)162384$$aHetzel, J.$$b1$$ufzj
001006970 7001_ $$0P:(DE-Juel1)131164$$aGebel, R.$$b2$$ufzj
001006970 7001_ $$0P:(DE-Juel1)131203$$aKamerdzhiev, V.$$b3$$ufzj
001006970 7001_ $$0P:(DE-Juel1)156288$$aPretz, Jörg$$b4$$eCorresponding author
001006970 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/18/04/P04010$$gVol. 18, no. 04, p. P04010 -$$n04$$pP04010 -$$tJournal of Instrumentation$$v18$$x1748-0221$$y2023
001006970 8564_ $$uhttps://juser.fz-juelich.de/record/1006970/files/Awal_2023_J._Inst._18_P04010.pdf$$yOpenAccess
001006970 8767_ $$d2023-04-21$$eHybrid-OA$$jPublish and Read
001006970 909CO $$ooai:juser.fz-juelich.de:1006970$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001006970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190925$$aForschungszentrum Jülich$$b0$$kFZJ
001006970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162384$$aForschungszentrum Jülich$$b1$$kFZJ
001006970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131164$$aForschungszentrum Jülich$$b2$$kFZJ
001006970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131203$$aForschungszentrum Jülich$$b3$$kFZJ
001006970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156288$$aForschungszentrum Jülich$$b4$$kFZJ
001006970 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
001006970 9141_ $$y2023
001006970 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006970 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006970 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006970 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001006970 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
001006970 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006970 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
001006970 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006970 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-25$$wger
001006970 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001006970 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001006970 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001006970 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001006970 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001006970 920__ $$lyes
001006970 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
001006970 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x1
001006970 980__ $$ajournal
001006970 980__ $$aVDB
001006970 980__ $$aUNRESTRICTED
001006970 980__ $$aI:(DE-Juel1)IKP-2-20111104
001006970 980__ $$aI:(DE-Juel1)IKP-4-20111104
001006970 980__ $$aAPC
001006970 9801_ $$aAPC
001006970 9801_ $$aFullTexts