001     1006971
005     20240711114111.0
024 7 _ |a 10.1088/1741-4326/acc7b8
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/34345
|2 Handle
024 7 _ |a WOS:000969310100001
|2 WOS
037 _ _ |a FZJ-2023-01922
082 _ _ |a 620
100 1 _ |a Xu, S.
|0 P:(DE-Juel1)171372
|b 0
|e Corresponding author
245 _ _ |a Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X
260 _ _ |a Vienna
|c 2023
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1682316965_10205
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The influence of plasma beta effects on the edge plasma transport in the Wendelstein 7-X standard configuration is studied systematically by using EMC3-EIRENE combined with a 3D equilibrium code named HINT. The magnetic topology changes induced by plasma beta effects are significantly reflected in plasma transport behaviors and heat flux patterns on divertor targets. After validating the modeling strategy by comparisons with experimental data, the extended simulations for high performance plasmas show that the threshold separatrix density for accessing the power detachment is reduced in higher beta plasmas. Compared with the vacuum field case, the impurity radiation distributions with finite beta effects are modified in the magnetic island region. The divertor heat flux is distributed more evenly along the toroidal direction on the strike line at the vertical target. The strike line on the horizontal target moves towards the pumping gap with an increase in the plasma beta. In addition, the different pressure profiles with the same central beta also result in a modified heat flux pattern on the divertor targets.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Knieps, A.
|0 P:(DE-Juel1)173792
|b 2
700 1 _ |a Zhou, S.
|b 3
700 1 _ |a Feng, Y.
|0 P:(DE-Juel1)6982
|b 4
700 1 _ |a Reiter, D.
|0 P:(DE-Juel1)5006
|b 5
|u fzj
700 1 _ |a Suzuki, Y.
|0 0000-0001-7618-6305
|b 6
700 1 _ |a Jia, M.
|0 P:(DE-Juel1)173884
|b 7
700 1 _ |a Geiger, J.
|0 0000-0003-4268-7480
|b 8
700 1 _ |a Reimold, F.
|b 9
700 1 _ |a König, R.
|b 10
700 1 _ |a Dinklage, A.
|0 0000-0002-5815-8463
|b 11
700 1 _ |a Harting, D.
|0 P:(DE-Juel1)177840
|b 12
|u fzj
700 1 _ |a Luo, Y.
|0 P:(DE-Juel1)190640
|b 13
|u fzj
700 1 _ |a Drews, P.
|0 P:(DE-Juel1)162257
|b 14
700 1 _ |a Jakubowski, M.
|0 0000-0002-6557-3497
|b 15
700 1 _ |a Gao, Y.
|0 P:(DE-Juel1)161317
|b 16
700 1 _ |a Pasch, E.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pandey, A.
|0 P:(DE-Juel1)188988
|b 18
|u fzj
700 1 _ |a Langenberg, A.
|0 P:(DE-Juel1)180388
|b 19
700 1 _ |a Pablant, N.
|0 0000-0001-6617-8459
|b 20
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 21
700 1 _ |a Wang, E.
|0 P:(DE-Juel1)168296
|b 22
|u fzj
700 1 _ |a Liu, S.
|b 23
700 1 _ |a Xiang, H. M.
|0 P:(DE-Juel1)179595
|b 24
|u fzj
700 1 _ |a Neubauer, O.
|0 P:(DE-Juel1)130109
|b 25
|u fzj
700 1 _ |a Huang, J.
|b 26
700 1 _ |a Cai, J.
|b 27
700 1 _ |a Yang, J.
|b 28
700 1 _ |a Liu, J.
|b 29
700 1 _ |a Liao, L.
|b 30
700 1 _ |a Gao, Y. C.
|b 31
773 _ _ |a 10.1088/1741-4326/acc7b8
|g Vol. 63, no. 6, p. 066005 -
|0 PERI:(DE-600)2037980-8
|n 6
|p 066005 -
|t Nuclear fusion
|v 63
|y 2023
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/1006971/files/Xu_2023_Nucl._Fusion_63_066005.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006971
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)5006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)177840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)190640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)162257
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)188988
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)168296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)179595
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)130109
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21