001006994 001__ 1006994
001006994 005__ 20240223132825.0
001006994 0247_ $$2doi$$a10.3389/fmolb.2023.1143353
001006994 0247_ $$2Handle$$a2128/34514
001006994 0247_ $$2pmid$$a37101557
001006994 0247_ $$2WOS$$aWOS:000976593100001
001006994 037__ $$aFZJ-2023-01933
001006994 082__ $$a570
001006994 1001_ $$0P:(DE-Juel1)180535$$aKhaled, Mohammed$$b0$$ufzj
001006994 245__ $$aComparative molecular dynamics simulations of pathogenic and non-pathogenic huntingtin protein monomers and dimers
001006994 260__ $$aLausanne$$bFrontiers$$c2023
001006994 3367_ $$2DRIVER$$aarticle
001006994 3367_ $$2DataCite$$aOutput Types/Journal article
001006994 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687147939_12274
001006994 3367_ $$2BibTeX$$aARTICLE
001006994 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006994 3367_ $$00$$2EndNote$$aJournal Article
001006994 520__ $$aPolyglutamine expansion at the N-terminus of the huntingtin protein exon 1 (Htt-ex1) is closely associated with a number of neurodegenerative diseases, which result from the aggregation of the increased polyQ repeat. However, the underlying structures and aggregation mechanism are still poorly understood. We performed microsecond-long all-atom molecular dynamics simulations to study the folding and dimerization of Htt-ex1 (about 100 residues) with non-pathogenic and pathogenic polyQ lengths, and uncovered substantial differences. The non-pathogenic monomer adopts a long α-helix that includes most of the polyQ residues, which forms the interaction interface for dimerization, and a PPII-turn-PPII motif in the proline-rich region. In the pathogenic monomer, the polyQ region is disordered, leading to compact structures with many intra-protein interactions and the formation of short β-sheets. Dimerization can proceed via different modes, where those involving the N-terminal headpiece bury more hydrophobic residues and are thus more stable. Moreover, in the pathogenic Htt-ex1 dimers the proline-rich region interacts with the polyQ region, which slows the formation of β-sheets.
001006994 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001006994 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006994 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$eCorresponding author
001006994 7001_ $$0P:(DE-HGF)0$$aSayyed-Ahmad, Abdallah$$b2
001006994 773__ $$0PERI:(DE-600)2814330-9$$a10.3389/fmolb.2023.1143353$$gVol. 10, p. 1143353$$p1143353$$tFrontiers in molecular biosciences$$v10$$x2296-889X$$y2023
001006994 8564_ $$uhttps://juser.fz-juelich.de/record/1006994/files/Khaled_et_al-2023-Frontiers_in_Molecular_Biosciences.pdf$$yOpenAccess
001006994 8564_ $$uhttps://juser.fz-juelich.de/record/1006994/files/fmolb-10-1143353.pdf$$yOpenAccess
001006994 8767_ $$d2023-04-24$$eAPC$$jDeposit$$z1935$
001006994 909CO $$ooai:juser.fz-juelich.de:1006994$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001006994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180535$$aForschungszentrum Jülich$$b0$$kFZJ
001006994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b1$$kFZJ
001006994 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001006994 9141_ $$y2023
001006994 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006994 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006994 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006994 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001006994 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001006994 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
001006994 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006994 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T12:25:52Z
001006994 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T12:25:52Z
001006994 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001006994 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001006994 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006994 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001006994 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-11T12:25:52Z
001006994 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MOL BIOSCI : 2022$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
001006994 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT MOL BIOSCI : 2022$$d2024-02-05
001006994 920__ $$lyes
001006994 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001006994 980__ $$ajournal
001006994 980__ $$aVDB
001006994 980__ $$aUNRESTRICTED
001006994 980__ $$aI:(DE-Juel1)IBI-7-20200312
001006994 980__ $$aAPC
001006994 9801_ $$aAPC
001006994 9801_ $$aFullTexts