001     1006994
005     20240223132825.0
024 7 _ |a 10.3389/fmolb.2023.1143353
|2 doi
024 7 _ |a 2128/34514
|2 Handle
024 7 _ |a 37101557
|2 pmid
024 7 _ |a WOS:000976593100001
|2 WOS
037 _ _ |a FZJ-2023-01933
082 _ _ |a 570
100 1 _ |a Khaled, Mohammed
|0 P:(DE-Juel1)180535
|b 0
|u fzj
245 _ _ |a Comparative molecular dynamics simulations of pathogenic and non-pathogenic huntingtin protein monomers and dimers
260 _ _ |a Lausanne
|c 2023
|b Frontiers
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687147939_12274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polyglutamine expansion at the N-terminus of the huntingtin protein exon 1 (Htt-ex1) is closely associated with a number of neurodegenerative diseases, which result from the aggregation of the increased polyQ repeat. However, the underlying structures and aggregation mechanism are still poorly understood. We performed microsecond-long all-atom molecular dynamics simulations to study the folding and dimerization of Htt-ex1 (about 100 residues) with non-pathogenic and pathogenic polyQ lengths, and uncovered substantial differences. The non-pathogenic monomer adopts a long α-helix that includes most of the polyQ residues, which forms the interaction interface for dimerization, and a PPII-turn-PPII motif in the proline-rich region. In the pathogenic monomer, the polyQ region is disordered, leading to compact structures with many intra-protein interactions and the formation of short β-sheets. Dimerization can proceed via different modes, where those involving the N-terminal headpiece bury more hydrophobic residues and are thus more stable. Moreover, in the pathogenic Htt-ex1 dimers the proline-rich region interacts with the polyQ region, which slows the formation of β-sheets.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 1
|e Corresponding author
700 1 _ |a Sayyed-Ahmad, Abdallah
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3389/fmolb.2023.1143353
|g Vol. 10, p. 1143353
|0 PERI:(DE-600)2814330-9
|p 1143353
|t Frontiers in molecular biosciences
|v 10
|y 2023
|x 2296-889X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006994/files/Khaled_et_al-2023-Frontiers_in_Molecular_Biosciences.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006994/files/fmolb-10-1143353.pdf
909 C O |o oai:juser.fz-juelich.de:1006994
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180535
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T12:25:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T12:25:52Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-11T12:25:52Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT MOL BIOSCI : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT MOL BIOSCI : 2022
|d 2024-02-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21