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a b s t r a c t 

There is significant interest in using neuroimaging data to predict behavior. The predictive models are often interpreted by the computation of feature importance, 

which quantifies the predictive relevance of an imaging feature. Tian and Zalesky (2021) suggest that feature importance estimates exhibit low split-half reliability, as 

well as a trade-off between prediction accuracy and feature importance reliability across parcellation resolutions. However, it is unclear whether the trade-off between 

prediction accuracy and feature importance reliability is universal. Here, we demonstrate that, with a sufficient sample size, feature importance (operationalized as 

Haufe-transformed weights) can achieve fair to excellent split-half reliability. With a sample size of 2600 participants, Haufe-transformed weights achieve average 

intra-class correlation coefficients of 0.75, 0.57 and 0.53 for cognitive, personality and mental health measures respectively. Haufe-transformed weights are much 

more reliable than original regression weights and univariate FC-behavior correlations. Original regression weights are not reliable even with 2600 participants. 

Intriguingly, feature importance reliability is strongly positively correlated with prediction accuracy across phenotypes. Within a particular behavioral domain, 

there is no clear relationship between prediction performance and feature importance reliability across regression models. Furthermore, we show mathematically 

that feature importance reliability is necessary, but not sufficient, for low feature importance error. In the case of linear models, lower feature importance error is 

mathematically related to lower prediction error. Therefore, higher feature importance reliability might yield lower feature importance error and higher prediction 

accuracy. Finally, we discuss how our theoretical results relate with the reliability of imaging features and behavioral measures. Overall, the current study provides 

empirical and theoretical insights into the relationship between prediction accuracy and feature importance reliability. 
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. Introduction 

Neuroimaging provides a non-invasive means to study human brain

tructure and function. In vivo imaging features have been linked to

any clinically relevant phenotypes when contrasting populations of

atients and healthy controls ( Greicius et al., 2004 ; Kennedy et al.,

006 ). However, these group-level studies ignore inter-individual dif-

erences within and across patient populations ( Zhang et al., 2016 ;
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ia et al., 2018 ; Zabihi et al., 2019 ; Tang et al., 2020 ; Wolfers et al.,

020 ). As a result, there is an increasing interest in the field to

hift from group differences to accurate individual-level predictions

 Dosenbach et al., 2010 ; Finn et al., 2015 ; Hsu et al., 2018 ; Nostro et al.,

018 ; Kong et al., 2019 ). 

One goal of neuroimaging-based behavioral prediction is clinical

sage to forecast practically useful clinical endpoints ( Gabrieli et al.,

015 ). This ambition requires users to have trust in the predictive mod-
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ls, which often rests on a given models’ interpretability ( Bussone et al.,

015 ; Price, 2018 ; Anderson and Anderson, 2019 ; Diprose et al., 2020 ;

edderich and Eickhoff, 2020 ). Indeed, the recently enacted European

nion Global Data Protection Regulation (GDPR) states that patients

ave a right to “meaningful information about the logic involved ”

hen automated decision-making systems are used ( Vasey et al., 2022a ,

022b ). Furthermore, in many studies, the derived predictive models are

ften interpreted to gain insights into the predictive principles and inter-

ndividual differences that underpin observed brain-behavior relation-

hips ( Finn et al., 2015 ; Greene et al., 2018 ; Chen et al., 2022 ). There-

ore, while many studies in the neuroimaging literature have focused

n prediction accuracy ( Dadi et al., 2019 ; He et al., 2020 ; Pervaiz et al.,

020 ; Schulz et al., 2020 ; Abrol et al., 2021 ), enhancing model inter-

retability remains an important issue. 

One approach to interpret predictive models is the computation of

eature-level importance, which quantifies the relevance of an imaging

eature in the predictive model. In the case of linear models, most previ-

us studies have interpreted the regression weights ( Jiang et al., 2020 ;

ripada et al., 2020 ; Cropley et al., 2021 ; Xiao et al., 2021 ) of predictive

odels. However, the covariance structure among predictive features

an lead to incorrect interpretations ( Haufe et al., 2014 ). Instead, Haufe

nd colleagues demonstrated that it is necessary to perform an inver-

ion of the linear models to yield the correct interpretation ( Haufe et al.,

014 ). We refer to this inversion as the Haufe transform. Further expla-

ation of the Haufe transform can be found in Section 2.7 and in the

riginal study ( Haufe et al., 2014 ). 

A recent study suggested that in the context of behavioral predictions

rom functional connectivity (FC), the reliability of feature-level im-

ortance (original regression weights and Haufe-transformed weights)

cross independent samples was poor ( Tian and Zalesky, 2021 ). Be-

ause the study utilized a maximum sample size of 400 and predicted

nly a small selection of cognitive measures and sex, it remains unclear

hether the results generalize to other sample sizes and behavioral do-

ains. Tian and Zalesky also found that higher resolution parcellations

ed to better prediction accuracy but lower feature importance reliabil-

ty. However, it is unclear whether the trade-off between prediction ac-

uracy and feature importance reliability is universal. A universal trade-

ff would be counterintuitive given that both feature importance reli-

bility and prediction accuracy should reflect the reliability of brain-

ehavior relationship across independent datasets. More specifically, if

he brain-behavior relationships in two independent data samples are

ighly similar, then we would expect that a model trained on one dataset

o generalize well to the other dataset (i.e., high prediction accuracy).

e would also expect the models trained on both datasets to be highly

imilar, leading to high feature importance reliability. Therefore, we

ypothesize that there is not a universal trade-off between prediction

ccuracy and feature importance reliability. 

In the present study, we used the Adolescent Brain Cognitive Devel-

pment (ABCD) study to investigate the relationship between prediction

ccuracy and feature importance reliability. Resting-state functional

onnectivity was used to predict a wide range of 36 behavioral measures

cross cognition, personality (related to impulsivity), and mental health.

e considered four commonly used prediction models: kernel ridge re-

ression (KRR), linear ridge regression (LRR), least absolute shrinkage

nd selection operator (LASSO), and Random Forest (RF) models. Con-

istent with Tian and Zalesky (2021) , we found that Haufe-transformed

eights were more reliable than regression weights and univariate FC-

ehavior correlations. However, for sufficiently large sample sizes, we

ound fair to excellent split-half reliability for the Haufe-transformed

eights. On the other hand, the original regression weights were unre-

iable even with thousands of participants. Intriguingly, feature impor-

ance reliability was strongly correlated with prediction accuracy across

ehavioral measures. Within a particular behavioral domain, there was

o clear relationship between prediction performance and feature im-

ortance reliability across regression algorithms. We show mathemati-

ally that split-half feature importance reliability is necessary, but not
2 
ufficient, for low feature importance error. In the case of linear mod-

ls, prediction error closely reflects feature importance error. Overall,

he current study provides empirical and theoretical insights into the

elationship between prediction accuracy and feature importance relia-

ility. 

. Methods 

.1. Dataset 

The Adolescent Brain Cognitive Development (ABCD) dataset (2.0.1

elease) was used for its large sample size, as well as its rich imaging and

ehavioral measures. The Institutional Review Board (IRB) at the Uni-

ersity of California, San Diego approved all aspects of the ABCD study

 Auchter et al., 2018 ). Parents or guardians provided written consent

hile the child provided written assent ( Clark et al., 2018 ). 

After quality control and excluding siblings, the final sample con-

isted of 5260 unrelated participants. Consistent with our previous stud-

es ( Chen et al., 2022 ; Ooi et al., 2022 ), each participant had a 419 × 419

C matrix as the imaging features, which were used to predict 36 behav-

oral measures across the behavioral domains of cognition, personality,

nd mental health. 

.2. Image preprocessing 

Images were acquired across 21 sites in the United States with

armonized imaging protocols for GE, Philips, and Siemens scanners

 Casey et al., 2018 ). We used structural T1 and resting-fMRI. For each

articipant, there were four resting-fMRI runs. Each resting-fMRI run

as 300 s long. Preprocessing followed our previously published study

 Chen et al., 2022 ). For completeness, the key preprocessing steps are

ummarized here. 

Minimally preprocessed T1 data were used ( Hagler et al., 2019 ). The

tructural data were further processed using FreeSurfer 5.3.0 ( Dale et al.,

999 ; Fischl et al., 1999 a, 1999 b; Fischl et al., 2001 ; Ségonne et al.,

004 , 2007 ), which generated accurate cortical surface meshes for each

ndividual. Individuals’ cortical surface meshes were registered to a com-

on spherical coordinate system ( Fischl et al., 1999a , 1999b ). Individu-

ls who did not pass recon-all quality control ( Hagler et al., 2019 ) were

emoved. 

Minimally preprocessed fMRI data ( Hagler et al., 2019 ) were

urther processed with the following steps: (1) removal of initial

rames, with the number of frames removed depending on the type

f scanner ( Hagler et al., 2019 ); and (2) alignment with the T1 im-

ges using boundary-based registration ( Greve and Fischl, 2009 ) with

sFast ( http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast ). Functional

uns with boundary-based registration (BBR) costs greater than 0.6

ere excluded. Framewise displacement (FD) ( Jenkinson et al., 2002 )

nd voxel-wise differentiated signal variance (DVARS) ( Power et al.,

012 ) were computed using fsl_motion_outliers. Respiratory pseudo-

otion was filtered out using a bandstop filter (0.31–0.43 Hz) before

omputing FD ( Power et al., 2019 ; Fair et al., 2020 ; Gratton et al.,

020 ). Volumes with FD > 0.3 mm or DVARS > 50, along with one

olume before and two volumes after, were marked as outliers and

ubsequently censored. Uncensored segments of data containing fewer

han five contiguous volumes were also censored ( Gordon et al., 2016 ;

ong et al., 2019 ). Functional runs with over half of their volumes

ensored and/or max FD > 5 mm were removed. Individuals who

id not have at least 4 min of data were also excluded from further

nalysis. 

The following nuisance covariates were regressed out of the fMRI

ime series: global signal, six motion correction parameters, averaged

entricular signal, averaged white matter signal, and their temporal

erivatives (18 regressors in total). Regression coefficients were esti-

ated from the non-censored volumes. We chose to regress the global

ignal because we were interested in behavioral prediction, and global

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
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ignal regression has been shown to improve behavioral prediction per-

ormance ( Greene et al., 2018 ; Li et al., 2019 ). The brain scans were

nterpolated across censored frames using least squares spectral estima-

ion ( Power et al., 2014 ), band-pass filtered (0.009 Hz ≤ f ≤ 0.08 Hz),

rojected onto FreeSurfer fsaverage6 surface space and smoothed using

 6 mm full-width half maximum kernel. 

.3. Functional connectivity 

We used a whole-brain parcellation comprising 400 cortical re-

ions of interest (ROIs) ( Schaefer et al., 2018 ) and 19 subcortical ROIs

 Fischl et al., 2002 ). For each participant and each fMRI run, functional

onnectivity (FC) was computed as the Pearson’s correlations between

he average time series of each pair of ROIs. FC matrices were then

veraged across runs, yielding a 419 × 419 FC matrix for each partici-

ant. Correlation values were converted to z-scores using Fisher’s r-to-

 transformation prior to averaging and converted back to correlation

alues after averaging. Censored frames were ignored when computing

C. 

.4. Behavioral data 

Following our previous study ( Chen et al., 2022 ), we considered

6 cognitive, 11 mental health, and 9 impulsivity-related personality

easures. The cognitive measures were vocabulary, attention, working

emory, executive function, processing speed, episodic memory, read-

ng, fluid cognition, crystallized cognition, overall cognition, short delay

ecall, long delay recall, fluid intelligence, visuospatial accuracy, visu-

spatial reaction time, and visuospatial efficiency. The mental health

easures were anxious depressed, withdrawn depressed, somatic com-

laints, social problems, thought problems, attention problems, rule-

reaking behavior, aggressive behavior, total psychosis symptoms, psy-

hosis severity, and mania. The impulsivity-related personality mea-

ures were negative urgency, lack of planning, sensation seeking, pos-

tive urgency, lack of perseverance, behavioral inhibition, reward re-

ponsiveness, drive, and fun seeking. 

Participants who did not have all behavioral measures were excluded

rom further analysis. As recommended by the ABCD consortium, indi-

iduals from Philips scanners were also excluded due to incorrect pre-

rocessing. Finally, by excluding siblings, the main analysis utilized data

rom 5260 unrelated children. 

.5. Split-half cross-validation 

ABCD is a multi-site dataset. To reduce sample size variability across

ites, smaller sites were combined to create 10 “site-clusters ”, each con-

aining at least 300 individuals (Table S1). Thus, participants within a

ite were in the same site-cluster. 

A split-half cross-validation procedure was utilized to evaluate the

rediction performance and the split-half reliability of feature impor-

ance. For each split, 5 site-clusters were selected as the training set and

he remaining 5 were selected as the test set. Prediction models were

rained on the training set to predict the behavioral measures from the

C matrices. The prediction models were then evaluated on the test set.

Here, we considered kernel ridge regression (KRR), linear ridge

egression (LRR), and least absolute shrinkage and selection opera-

or (LASSO) models for prediction. Hyperparameters were tuned using

ross-validation within the training set ( Chen et al., 2022 ). We also ex-

lored the use of random forests (RF) for prediction ( Breiman, 2001 ).

ecause of the large number of FC features in the current study, the RF

s much slower than KRR: a single RF model required 2 hours of training

ompared with 10 seconds for KRR. Therefore, tuning the hyperparam-

ters of the RFs would be computationally infeasible. Consequently, the

yperparameters of the RF models were fixed with the number of trees

et to 100 and the depth of each tree set to be 4. 
3 
Prediction accuracy was defined as the Pearson’s correlation between

he predicted and observed behavior of test participants. Feature impor-

ance of the regression models was computed in the training set (see

ection 2.7 ). After the prediction model was trained and evaluated, the

raining and test sets were swapped. The model training and evaluation

rocedure were then repeated. Thus, for a given regression approach

nd interpretation method, each data split yielded two prediction accu-

acies and two sets of feature importance. 

For each data split, the two accuracy numbers were averaged yield-

ng an overall prediction accuracy for the split. On the other hand, the

wo sets of feature importance ( 𝑓 1 and 𝑓 2 ) were used to compute split-

alf reliability ( Tian and Zalesky, 2021 ), which we refer to as split-half

ntra-class correlation coefficient (ICC). Note that 𝑓 1 and 𝑓 2 are vectors

f length 𝐾, where 𝐾 is the total number of features. The 𝑘 -th element

f 𝑓 1 (or 𝑓 2 ) is the feature importance of the 𝑘 -th feature in the first (or

econd) set of feature importance. 

CC = 

1 
𝐾𝑠 2 

𝐾 ∑
𝑘 =1 

(
𝑓 1 ,𝑘 − 𝑓 

)(
𝑓 2 ,𝑘 − 𝑓 

)
, (1)

 1 ,𝑘 and 𝑓 2 ,𝑘 are the 𝑘 -th element of 𝑓 1 and 𝑓 2 respectively. 𝑓 is the

ooled mean computed from both 𝑓 1 and 𝑓 2 , given by 1 
2 𝐾 

𝐾 ∑
𝑘 =1 

( 𝑓 1 ,𝑘 + 𝑓 2 ,𝑘 ) .

 

2 is the pooled variance computed from both 𝑓 1 and 𝑓 2 , given by

1 
2 𝐾 

𝐾 ∑
𝑘 =1 

( ( 𝑓 1 ,𝑘 − 𝑓 ) 2 + ( 𝑓 2 ,𝑘 − 𝑓 ) 2 ) . 

To ensure stability, the data split was repeated 126 (the number of

nique ways to split ten site-clusters into two halves, which is 10 choose

 divided by 2) times. 

.6. Reliability across different sample sizes 

The procedure in the previous section utilized the full sample size.

o evaluate feature importance reliability across different sample sizes,

he previous procedure ( Section 2.5 ) was repeated, but the participants

ere subsampled for each split-half cross-validation to achieve a desired

ample size N . More specifically, we considered sample sizes of 200,

00, 1000, and 1500. For each sample size N , we first split the 10 site-

lusters into two halves, each containing 5 site-clusters ( Section 2.5 ).

 /10 samples were then randomly sampled from each site-cluster.

he procedure was repeated 126 (the number of unique ways to split

en site-clusters into two halves, which is 10 choose 5 divided by 2)

imes. 

.7. Original and Haufe-transformed weights 

We used KRR, LRR, LASSO and RF to predict 36 behavioral measures

rom FC features. In particular, the lower triangular entries of the FC

atrix were used as input for the regression models. LRR, LASSO and RF

re commonly used in the literature. We have previously demonstrated

hat KRR is a powerful approach for resting-FC behavioral prediction

 He et al., 2020 ). 

Since KRR is less commonly used in the literature, we will provide

 high-level explanation here. Briefly, let 𝑦 𝑖 and 𝐹 𝐶 𝑖 be the behavioral

easure and FC of training individual 𝑖 . Let 𝑦 𝑡 and 𝐹 𝐶 𝑡 be the behavioral

easure and FC of a test individual. Then, kernel regression would pre-

ict the test individual’s behavior as the weighted average of the training

ndividuals’ behavior, i.e. 𝑦 𝑡 ≈
∑

𝑖 ∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ( 𝐹 𝐶 𝑖 , 𝐹 𝐶 𝑡 ) 𝑦 𝑖 , where

𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ( 𝐹 𝐶 𝑖 , 𝐹 𝐶 𝑡 ) was defined as the Pearson’s correlation between

 𝐶 𝑖 and 𝐹 𝐶 𝑡 . Thus, kernel regression assumed that individuals with

ore similar FC exhibit more similar behavior. To reduce overfitting,

n l 2 -regularization term was included, which was tuned in the training

et ( Kong et al., 2019 ; Li et al., 2019 ; He et al., 2020 ). 

To interpret the trained models, we considered both the regression

eights and Haufe-transformed weights. Since LRR and LASSO are lin-

ar models, the regression weights were straightforward to obtain. In the
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ase of KRR, the kernel regression model was converted to an equivalent

inear regression model, yielding one regression weight for each feature

 Liu et al., 2007 ; Chen et al., 2022 ). We note that this conversion was

ossible because we used the correlation kernel, which is linear when

he input features are pre-normalized. In the case of RF models, feature

mportance was extracted through calculating the out-of-bag error us-

ng a conditional permutation procedure, which reduced selection bias

f correlated variables ( Strobl et al., 2008 ). We refer to this approach as

onditional variable importance. 

Each prediction model was also inverted using the Haufe transform

 Haufe et al., 2014 ). To motivate the Haufe transform ( Haufe et al.,

014 ; Chen et al., 2022 ), suppose we seek to predict target variable 𝑦

e.g., fluid intelligence) from the FC of two edges ( 𝐹 𝐶1 and 𝐹 𝐶2 ). In this

xample, let us assume that 𝐹 𝐶1 = 𝑦 − 𝑚𝑜𝑡𝑖𝑜𝑛 , and 𝐹 𝐶2 = 𝑚𝑜𝑡𝑖𝑜𝑛 .

hen a prediction model with 100% accuracy would be 1 × 𝐹 𝐶1 + 1 ×
 𝐶2 . The regression weights of this model are both one for 𝐹 𝐶1 and

 𝐶2 . Based on the weights of the regression model, we would conclude

hat both 𝐹 𝐶1 and 𝐹 𝐶2 are strongly related to the target variable 𝑦 .

he Haufe transform resolves this issue by computing the covariance

etween the predicted target variable and each FC feature in the training

et. In this toy example, FC2 will be assigned a weight of zero by the

aufe transform, consistent with the intuition that FC2 is not related

o the target variable even though it is helpful for predicting the target

ariable. 

Further informative examples can be found in Haufe et al. (2014) .

ore generally, Haufe and colleagues demonstrated that for a linear pre-

ictive model, the appropriate transformation can be obtained by com-

uting the covariance of each feature and the predicted target variable

n the training set. When applied to nonlinear models, the Haufe trans-

orm recovers the “best ” linear interpretation of the nonlinear models

n the least square sense ( Haufe et al., 2014 ). Therefore, our application

f the Haufe transform to the random forests will only yield a partial

linear) interpretation of the random forests. 

.8. Mass univariate associations 

Besides predictive models, we also examined the split-half reliabil-

ty of mass univariate associations between FC and behavioral mea-

ures, which is sometimes referred to as brain-wide association anal-

sis ( Marek et al., 2022 ). We note that mass univariate associations

re often used for feature selection in neuroimaging predictive mod-

ls ( Finn et al., 2015 ). The selected features are then used to interpret

he model ( Finn et al., 2015 ; Shen et al., 2017 ). Therefore, mass univari-

te associations are a good proxy for such approaches. Here, univariate

ssociation is defined as the correlation between each FC feature and

ach behavioral measure. To study the split-half reliability of univariate

ssociations, we performed the same split-half procedure ( Sections 2.5

nd 2.6 ). However, instead of training a predictive model in the train-

ng set, we correlated the FC features and the behavioral measures of

he training participants to obtain one t-statistic for each feature and

ach behavioral measure. This procedure was repeated for the test par-

icipants. Split-half reliability was defined as the split-half ICC of the

-statistic values between the two halves of the dataset (i.e., training

nd test sets). 

.9. Data and code availability 

The ABCD data are publicly available via the NIMH Data Archive

NDA). Processed data from this study have been uploaded to the

DA. Researchers with access to the ABCD data will be able to

ownload the data: https://dx.doi.org/10.15154/1528762 . Anal-

sis code specific to this study was can be found on GitHub:

ttps://github.com/ThomasYeoLab/CBIG/tree/master/stable _ projects/ 

redict _ phenotypes/ChenOoi2023 _ ICCW . Co-authors TWKT and SZ
4 
eviewed the code before merging it into the GitHub repository to

educe the chance of coding errors. 

. Results 

.1. Haufe-transformed weights exhibit fair to excellent split-half reliability 

ith large sample sizes 

We computed resting-state functional connectivity (RSFC) among

00 cortical ( Schaefer et al., 2018 ) and 19 subcortical ( Fischl et al.,

002 ) regions for 5260 participants from the ABCD dataset ( Casey et al.,

018 ). The lower triangular entries of the 419 × 419 RSFC matrix were

hen vectorized to predict 36 behavioral scores that span across 3 do-

ains: cognition, personality, and mental health. 

Feature importance of KRR predictive models was interpreted us-

ng two approaches: regression weights and Haufe-transformed weights.

or comparison, t-statistics from mass univariate associations were also

omputed. We used a split-half procedure to compute the split-half re-

iability of feature importance. For each split, we fitted the KRR model

n each half and obtained the feature importance. The split-half relia-

ility was defined as the split-half ICC of the feature importance values

etween the two halves. 

Fig. 1 shows the split-half reliability of the two interpretation meth-

ds and mass univariate associations across 126 splits for different

ample sizes and behavioral domains. Consistent with previous stud-

es, split-half reliability of feature importance increases with larger

ample sizes across all behavioral domains and interpretation methods

 Tian and Zalesky, 2021 ; Marek et al., 2022 ). The Haufe-transformed

eights were consistently more reliable than univariate associations (t-

tatistics), which were in turn more reliable than the regression weights.

aufe-transformed weights at a sample size of 200 were more reliable

han the original regression weights at a sample size of 2630. 

At the largest sample size of 2630, an average split-half ICC of

.75 was achieved for Haufe-transformed weights of models predict-

ng cognitive measures, which is considered “excellent ” split-half reli-

bility ( Cicchetti, 1994 ). On the other hand, an average split-half ICC

f 0.57 and 0.53 were achieved for personality and mental health at

he full sample size, which are considered “fair ” split-half reliabili-

ies ( Cicchetti, 1994 ). Under the same sample size and interpretation

ethod, the split-half reliability of feature importance for mental health

nd personality was consistently lower than that of cognition. 

Similar conclusions were obtained with linear ridge regression

 Fig. 2 ), LASSO (Fig. S1) and RF (Fig. S2). In the case of RF models, con-

itional variable importance was computed (instead of weights). Note

hat univariate associations (tstats) were computed independent of re-

ression models and are therefore the same across Figs. 1 , 2 , S1 and

2. Overall, we found that Haufe-transformed weights achieved fair to

xcellent split-half reliability with sufficiently large samples. 

.2. Haufe-transformed weights are highly consistent across prediction 

odels 

The previous section investigated the reliability of feature impor-

ance across different data samples. Here, we seek to examine the reli-

bility of feature importance across different prediction models in the

ull sample of 5260 participants. For each split-half of the 5260 par-

icipants, we computed the similarity (Pearson’s correlation) of feature

mportance across the prediction models. 

Fig. 3 shows the similarity of feature importance across prediction

odels. Consistent with Tian and Zalesky (2021) , we found that Haufe-

ransformed weights showed better consistency than the original regres-

ion weights. Unlike Tian and Zalesky (2021) , because of our signifi-

antly larger sample size, excellent consistency was observed for the

aufe-transformed weights (max = 0.97, min = 0.63). Interestingly, al-

hough random forests have rather different inductive biases from linear

https://dx.doi.org/10.15154/1528762
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/ChenOoi2023_ICCW
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Fig. 1. Split-half reliability of feature importance of kernel ridge regression 

(KRR) models across different sample sizes, interpretation methods, and behav- 

ioral domains: (A) cognition, (B) personality, and (C) mental health. Split-half 

reliability was computed as split-half interclass correlation coefficients (ICC) 

of feature importance obtained from two non-overlapping split-halves of the 

ABCD participants. After splitting, participants were randomly subsampled to 

show the effect of sample size on feature importance reliability. Full data with- 

out subsampling was reported as a sample size of ∼2630. “∼” was used because 

the two halves have similar (but not exactly the same) sample sizes that summed 

to 5260 (total number of participants). Split-half ICC values were reported for 

Haufe-transformed model weights (Haufe), mass univariate associations (tstats), 

and original regression weights (weights). Boxplots show the distribution of av- 

erage split-half ICC within each behavioral domain across 126 split-half pairs. 

For each boxplot, the box extends from the lower to upper quartile values of the 

data, with a line at the median. The whiskers extend from the box to show the 

data range (excluding outliers). Outliers are defined as data points beyond 1.5 

times the interquartile range and shown as flier points past the whiskers. Over- 

all, across different sample sizes and behavioral domains, Haufe-transformed 

weights were more reliable than mass univariate associations (tstats), which 

were in turn more reliable than regression weights. Similar conclusions were ob- 

tained with linear ridge regression ( Fig. 2 ), LASSO (Fig. S1) and random forests 

(Fig. S2). 

m  

i  

c

Fig. 2. Split-half reliability of feature importance of linear ridge regression 

(LRR) models across different sample sizes, interpretation methods, and behav- 

ioral domains: (A) cognition, (B) personality, and (C) mental health. Same as 

Fig. 1 , except using LRR as the prediction model. Split-half reliability was com- 

puted as split-half interclass correlation coefficients (ICC) of feature importance 

obtained from two non-overlapping split-halves of the dataset. After splitting, 

data were randomly subsampled to show the effect of sample size on feature 

importance reliability. Full data without subsampling was reported as a sample 

size of ∼2630. “∼” was used because the two halves have similar (but not ex- 

actly the same) sample sizes that summed to 5260 (total number of participants). 

Note that mass univariate associations (tstats) were computed independent of 

regression models and are therefore the same across Figs. 1 , 2 , S1 and S2. Over- 

all, across different sample sizes and behavioral domains, Haufe-transformed 

weights were more reliable than mass univariate associations (tstats), which 

were in turn more reliable than original regression weights. 

3
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l  

b  
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i

odels, the Haufe-transformed weights of the random forests still exhib-

ted strong similarity with the linear models, especially when predicting

ognition. 
5 
.3. Feature importance reliability is strongly positively correlated with 

rediction accuracy across behavioral measures 

So far, our results have been largely consistent with Tian and Za-

esky (2021) , except our larger sample sizes led to better split-half relia-

ility of the Haufe-transformed weights. Next, we investigated the rela-

ionship between prediction accuracy and split-half reliability of feature

mportance using the full sample of 5260 participants. 
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Fig. 3. Similarity of feature importance across three predictive models in the full sample of 5260 participants. (A) Consistency of feature importance for 

Haufe-transformed weights. (B) Consistency of feature importance for original regression weights. We note that RF did not have regression weights, so did not appear 

in panel B. Similarity was computed as the Pearson’s correlation between feature importance values across different predictive models (KRR, LRR, LASSO and RF). 

Similarity was computed for each split-half and then averaged across the 126 data splits. Excellent consistency was observed for the Haufe-transformed weights. 
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Split-half reliability and prediction accuracy of each behavioral score

ere computed for each split-half of the dataset, followed by averag-

ng across the 126 data splits. Fig. 4 A shows the correlation between

eature importance reliability and prediction accuracy across the 36 be-

avioral measures for KRR. Prediction accuracy was highly correlated

ith split-half reliability of Haufe-transformed model weights ( r = 0.78),

-statistics ( r = 0.94) and original regression weights ( r = 0.97). This sug-

ests that a behavioral measure that was predicted with higher accuracy

lso enjoyed better feature importance reliability. 

Similar conclusions were obtained with linear ridge regression

 Fig. 4 B), LASSO ( Fig. 4 C) and RF ( Fig. 4 D). Overall, we found a strong

ositive relationship between feature importance reliability and predic-

ion accuracy. We repeated the analysis with the behavioral component

cores from Ooi et al. (2022) and found similar positive relationships

Fig. S3). 

Furthermore, in the case of Haufe transform and univariate associa-

ions (t-stats), there appears to be a nonlinear relationship between pre-

iction accuracies and split-half ICC ( Fig. 4 ). More specifically, higher

ccuracies led to greater split-half ICC, but with diminishing returns for

ehavioral measures with higher accuracies. 

.4. No clear relationship between prediction accuracy and feature 

mportance reliability across predictive models 

Table 1 summarizes average prediction accuracies for different be-

avioral domains, as well as split-half ICC of feature importance using

he full sample of 5260 participants. 

Among the linear models, KRR exhibited the highest split-half ICC,

ut not necessarily the best prediction performance. LASSO generally
6 
ad the worse prediction performance and the worst split-half ICC. LRR

xhibited the best prediction performance, but an intermediate level of

plit-half ICC. On the other hand, the RF models exhibited good predic-

ion performance and Haufe-transform split-half ICC for cognition and

ersonality, but not for mental health. Overall, there was no clear rela-

ionship between prediction performance and feature importance relia-

ility. 

Note that in our other studies ( Chen et al., 2022 ; Ooi et al., 2022 ), the

rediction performance of KRR was similar to (or slightly better) than

RR, suggesting that depending on the dataset (or even across different

amples within the same dataset), prediction accuracies can vary across

rediction approaches. 

.5. Split-half reliability is necessary, but not sufficient, for correct feature 

mportance 

We have shown a strong positive correlation between feature impor-

ance reliability and prediction accuracy ( Fig. 4 ). There is also a lack of

elationship between prediction accuracy across prediction models and

eature importance reliability ( Table 1 ). In the remaining sections of this

tudy, we will delve more deeply into the mathematical relationships

mong feature importance reliability, feature importance error and pre-

iction error. 

We begin by showing that split-half feature importance reliability is

ecessary but not sufficient for obtaining the “correct ” feature impor-

ance. Let 𝑓 𝐺 be the hypothetical ground-truth feature importance that

ight be derived assuming the correct generative process relating brain

eatures and behavioral measures is known. However, in the following

nalysis, we do not assume the ground truth generative process is known
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Fig. 4. Split-half reliability of feature impor- 

tance is positively correlated with prediction ac- 

curacy across 36 behavioral measures for (A) 

kernel ridge regression (KRR), (B) linear ridge 

regression (LRR), (C) LASSO and (D) random 

forest (RF). Split-half reliability and prediction 

accuracy of each behavioral score were com- 

puted for each split-half of the dataset, followed 

by averaging across the 126 data splits. 

7 



J. Chen, L.Q.R. Ooi, T.W.K. Tan et al. NeuroImage 274 (2023) 120115 

Table 1 

Summary of average prediction performance for cognitive, personality and mental health measures, as well as split- 

half ICC of Haufe-transformed weights, original weights, conditional variable importance and univariate associations 

(t-statistics). In general, within a behavioral domain (e.g., cognition), lower (or higher) prediction performance for a 

given predictive model was not necessarily associated with lower (or higher) split-half ICC. 

Cognition Corr ICC (Haufe) ICC (Weights) ICC (Conditional variable importance) ICC (Univariate association) 

KRR 0.16 0.75 0.16 N.A. 0.58 

LRR 0.25 0.68 0.08 N.A. 

LASSO 0.17 0.60 0.02 N.A. 

RF 0.20 0.76 N.A. 0.01 

Personality Corr ICC (Haufe) ICC (Weights) ICC (Conditional variable importance) ICC (Univariate association) 

KRR 0.07 0.57 0.09 N.A. 0.28 

LRR 0.07 0.40 0.02 N.A. 

LASSO 0.04 0.30 0.01 N.A. 

RF 0.06 0.55 N.A. 0.00 

Mental Health Corr ICC (Haufe) ICC (Weights) ICC (Conditional variable importance) ICC (Univariate association) 

KRR 0.07 0.53 0.08 N.A. 0.25 

LRR 0.07 0.38 0.02 N.A. 

LASSO 0.04 0.29 0.01 N.A. 

RF 0.02 0.26 N.A. 0.00 
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e  
nd we make no assumption about how 𝑓 𝐺 can be computed even if the

round truth generative process is known. 

Let 𝑓 𝑆 be the feature importance estimated from data sample 𝑆.

oth 𝑓 𝐺 and 𝑓 𝑆 are 𝐷 × 1, where 𝐷 is the number of features. The ex-

ected feature importance error can be defined as the expectation of the

quared error across different data samples 𝑆: 𝐸 𝑆 [ ( 𝑓 𝐺 − 𝑓 𝑆 ) 𝑇 ( 𝑓 𝐺 − 𝑓 𝑆 ) ] .
et 𝑓 𝑆 = 𝐸 𝑆 [ 𝑓 𝑆 ] be the feature importance averaged across all possible

ata samples 𝑆. The feature importance error can then be decomposed

nto two terms: 

 𝑆 

[(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝐺 − 𝑓 𝑆 

)]
= 

(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝐺 − 𝑓 𝑆 

)

+ 𝐸 𝑆 

[(
𝑓 𝑆 − 𝑓 𝑆 

)𝑇 (
𝑓 𝑆 − 𝑓 𝑆 

)]
(2) 

The proof is provided in the Appendix A. The decomposition of fea-

ure importance error as in Eq. (2) is similar in spirit (and derivation)

o the classical bias-variance decomposition of prediction error. 

The first term ( 𝑓 𝐺 − 𝑓 𝑆 ) 
𝑇 ( 𝑓 𝐺 − 𝑓 𝑆 ) in Eq. (2) measures the bias

f the feature importance estimation procedure. The second term

 𝑆 [ ( 𝑓 𝑆 − 𝑓 𝑆 ) 
𝑇 ( 𝑓 𝑆 − 𝑓 𝑆 ) ] measures the variance of the estimated feature

mportance across different samples, which is the opposite of reliabil-

ty. In other words, higher variance in feature importance estimation is

he same as lower reliability. Therefore, from Eq. (2) , we note that low

eature importance variance (i.e., high feature importance reliability) is

ecessary but not sufficient for low feature importance error. Low fea-

ure importance variance must be coupled with low feature importance

ias to achieve a small feature importance estimation error. 

.6. Prediction error reflects feature importance error for linear models 

The previous section shows that the reliability of feature impor-

ance is not sufficient for low feature importance error. In this sec-

ion, we show that when the ground truth data generation model is

inear and feature importance is defined as regression weights (or Haufe-

ransformed weights), then the prediction error is directly related to the

eature importance error. 

A linear regression model assumes that the data is generated through

 linear combination of features. For example, assume that a given data

oint ( 𝑥 𝑖 , 𝑦 𝑖 ) is generated by a linear model 𝑦 𝑖 = 𝑥 𝑇 
𝑖 
𝑤 𝐺 + 𝜖. Here, 𝑦 𝑖 is

 scalar, 𝑥 𝑖 is a 𝐷 × 1 vector, 𝑤 𝐺 is the groundtruth 𝐷 × 1 regression

eights, and 𝐷 is the number of features. 𝜖 is an independent noise term

ith zero mean. Without loss of generality, we assume that the expec-

ation of 𝑦 across data samples is 0 and the expectation of 𝑥 across data

amples is 0 for every feature. In the case of FC prediction of behavioral

raits, each data sample is a participant. 
8 
Suppose data sample 𝑆 = { ( 𝑥 1 , 𝑦 1 ) , …( 𝑥 𝑁 , 𝑦 𝑁 ) } is drawn as the train-

ng set. We can then train a linear regression model (e.g., LRR or LASSO)

n 𝑆 and obtain the regression weights 𝑤 𝑆 . The resulting prediction

odel will be 𝑦̂ = 𝑥 𝑇 𝑤 𝑆 . Let the difference between the ground truth and

stimated weights be Δ𝑤 ( 𝑆) = 𝑤 𝐺 − 𝑤 𝑆 . Thus, the regression weights

rror (on average across different training sets 𝑆) can be defined as

 𝑆 [ ( 𝑤 𝐺 − 𝑤 𝑆 ) 𝑇 ( 𝑤 𝐺 − 𝑤 𝑆 ) ] = 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 Δ𝑤 ( 𝑆) ] . 
On the other hand, the expected prediction error of the prediction

lgorithm can be defined as 𝐸 𝑆 𝐸 𝑥,𝑦 [ ( 𝑦 − 𝑥 𝑇 𝑤 𝑆 ) 
2 ] . Here, 𝐸 𝑥,𝑦 is the expec-

ation of the squared prediction error over out-of-sample test data points

ampled from the distribution of ( 𝑥, 𝑦 ) . We note that the test data points

re sampled independently from the sampling of the training dataset 𝑆.

hen, the expected test error can be decomposed into: 

 𝑆 𝐸 𝑥,𝑦 

[(
𝑦 − 𝑥 𝑇 𝑤 𝑆 

)2 ] = 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 
[
Δ𝑤 ( 𝑆 ) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋 ) ∗ Δ𝑤 ( 𝑆 ) 

]
(3)

The proof is found in the Appendix B. In Eq. (3) the first term is the

rreducible error 𝑉 𝑎𝑟 ( 𝜖) , which is the variance of the noise. The second

erm 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ Δ𝑤 ( 𝑆) ] is determined by both the regres-

ion weights error Δ𝑤 ( 𝑆) and the covariance of features 𝐶𝑂𝑉 ( 𝑋) . 
We can consider three different scenarios for the covariance matrix

 𝑂𝑉 ( 𝑋) . First, suppose 𝐶 𝑂𝑉 ( 𝑋) is an identity matrix, which implies

he features are independent and of unit variance. Then, the prediction

rror ( Eq. (3) ) can be written as 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 Δ𝑤 ( 𝑆) ] . Therefore,

he prediction error is simply the sum of the regression weights error

nd the irreducible error. 

Second, suppose 𝐶𝑂𝑉 ( 𝑋) is a diagonal matrix, i.e., 𝐶𝑂𝑉 ( 𝑋) =
𝑖𝑎𝑔( 𝜎1 , 𝜎2 , … , 𝜎𝑑 ) , which implies the features are independent. In

his case, the prediction error ( Eq. (3) ) can be written as 𝑉 𝑎𝑟 ( 𝜖) +

 𝑆 [ 
𝐷 ∑
𝑑=1 
𝜎𝑑 Δ𝑤 ( 𝑑) ( 𝑆) 2 ] . Here, Δ𝑤 ( 𝑑) ( 𝑆) is the regression weight error of the

-th feature based on the training dataset 𝑆. In this scenario, a bigger

egression weights error still leads to a bigger prediction error, but the

eights error of features with larger variance results in a larger predic-

ion error than features with small variance. 

Third, suppose we do not make any independence assumptions about

he features. Since 𝐶𝑂𝑉 ( 𝑋) is a symmetric matrix, we can decompose

𝑂𝑉 ( 𝑋) as 𝐶𝑂𝑉 ( 𝑋) = 𝑅 

𝑇 𝐷𝑅 . Here, 𝑅 is a rotation matrix where 𝑅 

𝑇 𝑅

s equal to an identity matrix and 𝐷 is a diagonal matrix. Then, we can

ewrite the prediction error ( Eq. (3) ) as: 

 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 
[
Δ𝑤 ( 𝑆 ) 𝑇 ∗ 𝑅 

𝑇 ∗ 𝐷 ∗ 𝑅 ∗ Δ𝑤 ( 𝑆 ) 
]

(4)

To summarize the three scenarios for 𝐶𝑂𝑉 ( 𝑋) , regression weights

rrors of all features are related to prediction error, but features with a
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l  
arger variance (up to a rotation) have a stronger relationship with the

rediction error. 

We can also establish a similar relationship between the Haufe-

ransformed weights error and the prediction error. Note that the Haufe-

ransformed weights can be computed as ( 𝑋 𝑆 ) ∗ 𝑤 𝑠 . Here the 𝑤 𝑆 is

he original regression weights and 𝐶𝑂𝑉 ( 𝑋 𝑆 ) is the feature covariance

f training sample equation S. Assuming that the sample covariance is

lose to the true covariance, i.e., 𝐶𝑂𝑉 ( 𝑋 𝑆 ) ≈ 𝐶𝑂𝑉 ( 𝑋) , then the Haufe-

ransformed weights error can be written as: 

 𝑆 

[
Δ𝑤 ( 𝑆 ) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋 ) ∗ 𝐶𝑂𝑉 ( 𝑋 ) ∗ Δ𝑤 ( 𝑆 ) 

]

= 𝐸 𝑆 
[
Δ𝑤 ( 𝑆 ) 𝑇 ∗ 𝑅 

𝑇 𝐷 

2 𝑅 ∗ Δ𝑤 ( 𝑆 ) 
]

(5) 

Comparing the Haufe-transformed weights error ( Eq. (5) ) with the

rediction error ( Eq. (4) ), we see that the Haufe-transformed weights

rror is closely related to the prediction error, given that Eqs. (4) and

5) only differ by the square of the diagonal matrix 𝐷. 

Overall, we conclude that higher original regression weights errors

 Eq. (4) ) and higher Haufe-transformed errors ( Eq. (5) ) are related to

reater prediction error up to a scaling by the feature covariance matrix.

. Discussion 

We have provided empirical and theoretical evidence on the relation-

hip between prediction accuracy and feature importance reliability. 

.1. Haufe-transformed model weights are more reliable than original 

egression weights and univariate FC-behavior correlations 

Consistent with Tian and Zalesky (2021) , we found that Haufe-

ransformed weights were much more reliable than original regression

eights. In our experiments, we note that even with a sample size of

2630 participants, the original kernel regression weights achieved a

plit-half ICC of less than 0.2 when predicting cognitive measures, which

s less than the split-half ICC of Haufe-transformed weights with a sam-

le size of 200 ( Fig. 1 A). This is perhaps not surprising since it has

een empirically shown that regression weights contain more noise than

he Haufe-transformed weights ( Haufe et al., 2014 ). Furthermore, for

redictive models with sparse regularization (e.g., LASSO), it is well-

nown that noise in the features can lead to very different features be-

ng selected, which will lead to low split-half reliability in the regression

eights. In the case of random forests, the poor split-half reliability was

robably due to the large number of functional connectivity features

87,571 features). Using a random forest with 100 trees and a depth of

 would mean that a maximum of 1500 unique features being chosen,

o the conditional variable importance was susceptible to the random

hoice of features included in the random forest. 

Also consistent with Tian and Zalesky (2021) , we found that Haufe-

ransformed weights were more reliable than univariate brain-behavior

orrelations. In our experiments, we note that with a sample size of

2630 participants, the univariate FC-behavior correlations achieved a

plit-half ICC of less than 0.6 for cognitive measures, which is less than

he split-half ICC of Haufe-transformed weights with a sample size of

000 ( Fig. 1 A). The higher split-half ICC of Haufe-transformed weights

ver univariate associations is somewhat surprising. A previous study

as suggested that the predicted outcomes of predictive models is sub-

tantially more reliable than the functional connectivity features them-

elves ( Taxali et al., 2021 ). Here, we speculate that the predicted be-

avioral measures might even be more reliable than the raw behavioral

easures themselves. The reason is that the regularization of many pre-

ictive models serves to “shrink ” the predicted outcomes towards the

opulation mean, which should increase reliability. If predicted behav-

oral measures are more reliable than raw behavioral measures, then the

ovariance of the predicted behavioral measures with FC (i.e., haufe-

ransformed weights) should be more reliable than the correlation be-

ween raw behavioral measures and FC (i.e., univariate associations). 
9 
It is also worth mentioning that Tian and Zalesky (2021) found that

he split-half ICC of Haufe-transformed weights remained lower than

.4 across split-half of 800 participants (i.e., two groups of 400 par-

icipants), which is consistent with our results (see sample size of 400

n our Figs. 1 and 2 ). Not surprisingly, we obtained higher reliability

ith larger sample sizes. More specifically, with a sample size of about

600 participants, Haufe-transformed weights achieve average intra-

lass correlation coefficients of 0.75, 0.57 and 0.53 for cognitive, per-

onality and mental health measures respectively ( Fig. 1 ). Overall, the

se of Haufe-transformed weights might help to alleviate reliability is-

ues highlighted in previous neuroimaging studies ( Kharabian Masouleh

t al. 2019 ; Marek et al., 2022 ). On the other hand, we recommend that

egression weights should not be used for model interpretation given

heir low split-half reliability even in the large sample regime of a few

housand participants. 

.2. There is not always an empirical trade-off between feature importance 

eliability and prediction accuracy 

Tian and Zalesky (2021) found that FC-based prediction using lower

esolution atlases (compared with higher resolution atlases) had higher

eature importance reliability but lower prediction accuracy. Our study

uggests that this trade-off between prediction accuracy and feature im-

ortance reliability is not universal. For example, we found that behav-

oral measures that are predicted better also enjoy better feature impor-

ance reliability ( Fig. 4 ). 

Furthermore, in our current study, within a behavioral domain, there

as no clear relationship between prediction performance and feature

mportance reliability across regression algorithms ( Table 1 ). Similarly,

s can be seen in Figure 2 of Tian and Zalesky (2021) , higher prediction

ccuracy does not necessitate lower split-half reliabilities, e.g., kernel

idge regression enjoyed better prediction accuracy and feature impor-

ance reliability than connectome-based predictive modeling. 

Overall, these empirical results show that it is possible to achieve

igh prediction accuracy and high feature importance reliability, sug-

esting that there is not always a trade-off between prediction accuracy

nd feature importance reliability. 

.3. There is not a theoretical trade-off between feature importance 

eliability and prediction accuracy 

Eq. (2) shows that feature importance reliability is necessary but not

ufficient for obtaining the “correct ” feature importance (or low feature

mportance error). More specifically, feature importance error can be

ecomposed into a bias term and a variance term, where the variance

erm is the opposite of feature importance reliability. Consequently, low

eature importance variance (i.e., high feature importance reliability) is

ecessary but not sufficient for low feature importance error. 

This result echoes previous studies in neuroimaging ( Noble et al.,

017 ), as well as other areas of quantitative research ( Kirk and

iller, 1986 ), demonstrating that reliability is not the same as valid-

ty. To give an extreme example, if we utilized an extremely strong

egularization in our regression models, the regression weights would

e driven to zero. In this scenario, the feature importance (regression

eights) would be highly reliable across data samples, but the feature

mportance would not be valid or close to the ground truth values (de-

ived from the ground truth generative process). 

In the case of linear models, we further showed in Eq. (3) that

igher feature importance error (operationalized by original regression

eights) is related to worse prediction accuracy, up to a rotation and

caling by the feature covariance matrix. In Eq. (5) , we showed that

igher feature importance error (operationalized by Haufe-transformed

eights) is related to worse prediction accuracy, up to a scaling of the

igenvalues of the feature covariance matrix. 

Overall, these theoretical results suggest that at least in the case of

inear models, there is not necessarily a trade-off between feature impor-
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ance reliability and prediction accuracy. In fact, improving prediction

erformance might even reduce feature importance error and poten-

ially improve feature importance reliability. 

Given the link between feature importance error and prediction per-

ormance, in some sense, feature importance error might be a more

eaningful metric than feature importance reliability. However, we

annot directly measure feature importance error, so a useful proxy

ight be to consider both feature importance reliability and prediction

erformance. 

.4. Reliability of functional connectivity and behavioral measures 

There is a significant literature on the reliability of FC ( Noble et al.,

019 ). Recent studies have also emphasized that the reliability of be-

avioral measures (in addition to FC reliability) is important for good

rediction performance ( Nikolaidis et al., 2022 ; Gell et al., 2023 ). How

o FC and behavioral reliability relate to our theoretical results? 

Recall that assuming 𝑦 = 𝑥 𝑇 𝑤 𝐺 + 𝜖, then as shown in Eq. (3) , the pre-

iction error can be written as 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ Δ𝑤 ( 𝑆) ] ,
here 𝐶𝑂𝑉 ( 𝑋) is the 𝐷 × 𝐷 feature covariance matrix and Δ𝑤 ( 𝑆) is the

× 1 regression weights error. 𝑉 𝑎𝑟 ( 𝜖) is the variance of the irreducible

oise 𝜖, which can be thought of as the variance of the behavioral mea-

ure unrelated to the features. 

To think about the effect of the reliability of behavioral measure

, suppose we add more noise to the behavioral measure 𝑦 , so that

 = 𝑥 𝑇 𝑤 𝐺 + 𝜖2 , where 𝑉 𝑎𝑟 ( 𝜖2 ) > 𝑉 𝑎𝑟 ( 𝜖) . In this scenario, the prediction

rror can now be written as 𝑉 𝑎𝑟 ( 𝜖2 ) + 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ Δ𝑤 ( 𝑆) ] .
herefore, the equation is basically the same as before except for the

arger noise variance 𝑉 𝑎𝑟 ( 𝜖2 ) . In addition, the larger noise in 𝑦 would

lso lead to greater regression weights error Δ𝑤 ( 𝑆) . Overall, worse be-

avioral reliability leads to larger 𝑉 𝑎𝑟 ( 𝜖) and Δ𝑤 ( 𝑆) , and thus worse

rediction error. The worse regression weights error Δ𝑤 ( 𝑆) is in turn

ssociated with worse feature importance bias and/or reliability (via

q. (2) ). 

On the other hand, suppose we add more noise to the FC fea-

ures 𝑥 to reduce FC reliability, so that the new features 𝑥 2 = 𝑥 + 𝜖2 ,

here 𝜖2 is a 𝐷 × 1 noise vector with zero mean. Then 𝑦 = 𝑥 𝑇 𝑤 𝐺 +
= 𝑥 𝑇 2 𝑤 𝐺 − 𝜖𝑇 2 𝑤 𝐺 + 𝜖. Using the same derivation as Appendix B, the

rediction error can now be decomposed as 𝑉 𝑎𝑟 ( 𝜖) + 𝑉 𝑎𝑟 ( 𝜖𝑇 2 𝑤 𝐺 ) +
 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋 2 ) ∗ Δ𝑤 ( 𝑆) ] . Therefore, worse FC reliability leads

o an additional noise term 𝑉 𝑎𝑟 ( 𝜖𝑇 2 𝑤 𝐺 ) , larger feature covariance ma-

rix 𝐶𝑂𝑉 ( 𝑋 2 ) and greater regression weight error Δ𝑤 ( 𝑆) , thus leading

o worse prediction performance. The worse regression weights error

𝑤 ( 𝑆) is in turn associated with worse feature importance bias and/or

eliability (via Eq. (2) ). 

It is important to note that perfect feature and behavioral relia-

ility is not a panacea. For example, if features and behavioral mea-

ure both have perfect reliability, but they are not related to each

ther, e.g., 𝑥 and 𝑦 both follow white Gaussian distributions. Then,

 = 𝑥 𝑇 0 + 𝜖 (i.e., 𝑤 𝐺 = 0 ), and the prediction error of 𝑦 still follows

q. (3) : 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ Δ𝑤 ( 𝑆) ] . In this case, 𝑉 𝑎𝑟 ( 𝜖) is
imply the variance of the behavioral measure. We note that if we sim-

ly predict the mean of the behavioral measure (i.e., completely ignore

 ), then the prediction error of 𝑦 will be 𝑉 𝑎𝑟 ( 𝜖) . On the other hand, if we

re fitting a model to predict 𝑦 from 𝑥 , then because of the finite sam-

le size, the regression weights will not be equal to the ground truth,

o the regression weight error Δ𝑤 ( 𝑆) is actually non-zero. Therefore,

he overall prediction will be worse than simply predicting the mean of

he behavioral measure, which would lead to a negative coefficient of

eterminant (a measure of prediction performance). 

.5. Reconciling theoretical and empirical results 

Our theoretical results suggest a link between feature importance

eliability and prediction performance. 
10 
Consistent with the theoretical results, there was empirically a strong

orrelation between feature importance reliability and prediction per-

ormance across behavioral measures ( Fig. 4 ). Similar to our previous

tudies ( Kong et al., 2021 ; Chen et al., 2022 ; Ooi et al., 2022 ), cog-

itive measures were predicted better than other behavioral measures

 Figs. 1 , 2 and 4 ). One possible explanation for the variation in predic-

ion performance across behavioral measures might be the reliability of

he behavioral measures, as discussed in Section 4.4 and previous stud-

es ( Nikolaidis et al., 2022 ; Gell et al., 2023 ). Another possible explana-

ion is the strength of the relationship between FC features and target

ehavioral measures (again discussed in Section 4.4 ). Therefore, behav-

oral measures with higher reliability and/or stronger relationship with

C features might be predicted better, as well as enjoyed better feature

mportance error and reliability. 

On the other hand, there was empirically not a clear relation-

hip between prediction performance and feature importance reliabil-

ty across predictive models ( Table 1 ). For example, when predicting

ognition, KRR exhibited worse prediction performance than LRR (0.16

ersus 0.25), but better Haufe-transformed feature importance reliabil-

ty (0.75 vs 0.68). There are several ways these empirical and theoretical

esults can be reconciled. 

First, although KRR exhibited better Haufe-transformed feature im-

ortance reliability than LRR, it is possible that KRR had worse feature

mportance bias than LRR, so that the overall feature importance error

s worse than LRR, resulting in worse prediction performance. 

Second, recall that according to Eq. (5) , the prediction error can be

xpressed as 𝐸 𝑆 [ Δ𝑤 ( 𝑆) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ 𝐶𝑂𝑉 ( 𝑋) ∗ Δ𝑤 ( 𝑆) ] , where Δ𝑤 ( 𝑆)
s the 𝐷 × 1 feature importance error (where 𝐷 is the number of fea-

ures) and 𝐶𝑂𝑉 ( 𝑋) is the 𝐷 × 𝐷 covariance matrix of the features. Be-

ause of the middle covariance term, not all feature importance errors

re equally important. It is possible that KRR has lower feature impor-

ance errors on average across all features ( Δ𝑤 ( 𝑆) 𝑇 Δ𝑤 ( 𝑆) ) than LRR,

ut the feature importance error is greater for certain features that are

ore intrinsically linked to the prediction error via the covariance term

𝑂𝑉 ( 𝑋) ∗ 𝐶𝑂𝑉 ( 𝑋) . 
Third, Eq. (5) assumes that the true data generation process is linear,

.e., there is a linear relationship between FC features and the target vari-

ble. Therefore, Eq. (5) might not hold if the true relationship between

C features and target variable is nonlinear. 

Finally, the prediction error in Eq. (5) is the average across infinite

nstances of training set S and an infinite test set. Therefore, the equation

an be violated in the finite sample scenario ( Table 1 ). 

. Conclusion 

In this study, we show that Haufe-transformed weights are much

ore reliable than original regression weights when computing feature

mportance. Furthermore, feature importance reliability is strongly pos-

tively correlated with prediction accuracy across phenotypes. However,

ithin a particular behavioral domain, there is no clear relationship be-

ween prediction performance and feature importance reliability across

egression models. We also show mathematically that feature impor-

ance reliability is necessary, but not sufficient, for low feature impor-

ance error. In the case of linear models, lower feature importance error

s mathematically related to lower prediction error. Therefore, higher

eature importance reliability might yield lower feature importance er-

or and higher prediction accuracy. Overall, our study provides thereti-

al and empical insights into the relationships among imaging feature

eliability, behavioral measure reliability, feature importance reliability

nd behavioral prediction accuracies. 
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ppendix A 

In this appendix, we will provide proof of Eq. (2) , which decomposes

he feature importance error 𝐸 [ ( 𝑓 − 𝑓 ) 𝑇 ( 𝑓 − 𝑓 ) ] into a bias term
𝑆 𝐺 𝑆 𝐺 𝑆 

11 
 𝑓 𝐺 − 𝑓 𝑆 ) 
𝑇 ( 𝑓 𝐺 − 𝑓 𝑆 ) and a variance term 𝐸 𝑆 [ ( 𝑓 𝑆 − 𝑓 𝑆 ) 

𝑇 ( 𝑓 𝑆 − 𝑓 𝑆 ) ] . 

 𝑆 

[(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝐺 − 𝑓 𝑆 

)]

= 𝐸 𝑆 

[(
( 𝑓 𝐺 − 𝑓 𝑆 ) − 

(
𝑓 𝑆 − 𝑓 𝑆 

))𝑇 ((
𝑓 𝐺 − 𝑓 𝑆 

)
− 

(
𝑓 𝑆 − 𝑓 𝑆 

))]

= 𝐸 𝑆 

[(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝐺 − 𝑓 𝑆 

)]
+ 𝐸 𝑆 

[(
𝑓 𝑆 − 𝑓 𝑆 

)𝑇 (
𝑓 𝑆 − 𝑓 𝑆 

)]

− 2 𝐸 𝑆 
[(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝑆 − 𝑓 𝑆 

)]

= 

(
𝑓 𝐺 − 𝑓 𝑆 

)𝑇 (
𝑓 𝐺 − 𝑓 𝑆 

)
+ 𝐸 𝑆 

[(
𝑓 𝑆 − 𝑓 𝑆 

)𝑇 (
𝑓 𝑆 − 𝑓 𝑆 

)]
. 

here the last equality is true because 𝐸 𝑆 [ ( 𝑓 𝐺 − 𝑓 𝑆 ) 
𝑇 ( 𝑓 𝑆 − 𝑓 𝑆 ) ] =

 𝑓 𝐺 − 𝑓 𝑆 ) 
𝑇 ( 𝑓 𝑆 − 𝑓 𝑆 ) = 0 . 

ppendix B 

In this appendix, we will provide proof of Eq. (3) , which establishes

he relationship between the prediction error 𝐸 𝑆 𝐸 𝑥,𝑦 [ ( 𝑦 − 𝑥 𝑇 𝑤 𝑆 ) 
2 ] and

egression weights error Δ𝑤 ( 𝑆) , assuming an underlying linear model

 𝑖 = 𝑥 𝑇 
𝑖 
𝑤 𝐺 + 𝜖: 

 𝑆 𝐸 𝑥,𝑦 

[(
𝑦 − 𝑥 𝑇 𝑤 𝑆 

)2 ]

= 𝐸 𝑆 𝐸 𝑥,𝑦 

[(
𝑥 𝑇 𝑤 𝐺 + 𝜖 − 𝑥 𝑇 𝑤 𝑆 

)2 ]

= 𝐸 𝑆 𝐸 𝑥,𝑦 

[(
𝑥 𝑇 Δ𝑤 ( 𝑆 ) + 𝜖

)2 ]
, where Δ𝑤 ( 𝑆 ) = 𝑤 𝐺 − 𝑤 𝑆 

= 𝐸 𝑆 𝐸 𝑥,𝑦 
[
𝜖2 
]
+ 𝐸 𝑆 𝐸 𝑥,𝑦 

[(
𝑥 𝑇 Δ𝑤 ( 𝑆 ) 

)2 ] + 2 ∗ 𝐸 𝑆 𝐸 𝑥,𝑦 
[
𝜖 ∗ 𝑥 𝑇 Δ𝑤 ( 𝑆 ) 

]

= 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 𝐸 𝑥,𝑦 
[
Δ𝑤 ( 𝑆 ) 𝑇 𝑥𝑥 𝑇 Δ𝑤 ( 𝑆 ) 

]
, because 𝐸 𝑥,𝑦 

(
𝜖 ∗ 𝑥 𝑇 

)

= 𝐸 𝑥,𝑦 
(
𝜖) 𝐸 𝑥,𝑦 ( 𝑥 𝑇 

)
= 0 

= 𝑉 𝑎𝑟 ( 𝜖) + 𝐸 𝑆 
[
Δ𝑤 ( 𝑆 ) 𝑇 ∗ 𝐶𝑂𝑉 ( 𝑋 ) ∗ Δ𝑤 ( 𝑆 ) 

]
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