001     1007024
005     20240712112832.0
024 7 _ |a 10.1016/j.cej.2023.141903
|2 doi
024 7 _ |a 1385-8947
|2 ISSN
024 7 _ |a 1873-3212
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01943
|2 datacite_doi
024 7 _ |a WOS:000946312100001
|2 WOS
037 _ _ |a FZJ-2023-01943
100 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 0
|e First author
245 _ _ |a Breaking the passivity wall of metals: Exempli gratia non-aqueous Ti–air battery
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688382681_2855
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A new multivalent metal–air battery employing Titanium (Ti) as active material in EMIm(HF)2.3F room temperature ionic liquid electrolyte is introduced. Ti metal is highly attractive as it is a light metal that can possibly transfer up to 4 electrons. The electrochemical behavior of Ti is known for its passivity in various media. Here, we evaluated the electrochemistry of Ti in EMIm(HF)2.3F with potentiodynamic polarization and galvanostatic discharge experiments. Ti–air battery could successfully be operated under relatively high current densities (up to 0.75 mA cm−2) with an average cell voltage of 1–1.2 V, yielding up to a discharge capacity of 66 mAh cm−2. When its full potential is harvested, such a metal–battery holds a unique potential to be the only metal with 4 electrons transfer during its discharge.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a iNEW2.0 (BMBF-03SF0627A)
|0 G:(DE-Juel1)BMBF-03SF0627A
|c BMBF-03SF0627A
|x 1
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kaltenberg, Marcel
|0 P:(DE-Juel1)188779
|b 1
700 1 _ |a Dzieciol, Krzysztof
|0 P:(DE-Juel1)164430
|b 2
700 1 _ |a Schalenbach, Maximilian
|0 P:(DE-Juel1)179453
|b 3
700 1 _ |a Gelman, Danny
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shvartsev, Boris
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 6
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
|e Corresponding author
|u fzj
700 1 _ |a Ein-Eli, Yair
|0 P:(DE-Juel1)191257
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.cej.2023.141903
|g Vol. 461, p. 141903 -
|0 PERI:(DE-600)2012137-4
|p 141903 -
|t The chemical engineering journal
|v 461
|y 2023
|x 1385-8947
856 4 _ |u https://juser.fz-juelich.de/record/1007024/files/1-s2.0-S1385894723006344-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007024
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188779
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)188779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164430
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179453
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)191257
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21